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A network formation model founded on a well-defined preference structure for all the
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any equilibrium (Sheng (2014), Miyauchi (2016), Leung (2015)).2 Relative to these pa-
pers, our proposed method does not require certain restrictions on preferences (e.g., rul-
ing out negative externalities or requiring a homophilous attribute), and it may be more
computationally tractable. A number of other papers in this literature rely on dynamic
meeting protocols for the formation of the network (Christakis et al. (2010), Mele (2017),
Badev (2013)).3  Chandrasekhar and Jackson (2014) proposed a different approach where
the network is generated from overlapping sub-graphs. Also, some recent papers consider
the estimation of dyadic link formation models (i.e., without link externalities) with a fo-
cus on disentangling homophily and node-specific heterogeneity (Charbonneau (2017),
Graham (2017), Dzemski (2014)).

Because matching models essentially aim at characterizing a bipartite graph, and hence
a particular type of network, those models are also related to strategic network forma-
tion. There is a growing literature on the econometrics of matching (e.g., Choo and Siow
(2006), Fox (2010, 2018), Galichon and Salanie (2009), Echenique, Lee, and Shum (2010),
Chiappori, Galichon, and Salanié (2016), Menzel (2015)). Our setting differs in substan-
tive aspects, however: indirect connections are payoff-relevant, utility is non-transferable,
and multiple equilibria are possible (in contrast to some models in that literature). Also
the concept of pairwise stability in matching games is related but not identical to the
Jackson and Wolinsky (1996) definition, where only one link at a time is considered.

2. NETWORK FORMATION MODEL

Our framework applies to complete information games that produce an undirected net-
work. One example is a static game in which players simultaneously announce the set of
other players they would like to be connected with, links form if they are mutually benefi-
cial, and payoffs are received.4 We use a continuum of players, i ∈
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Payoffs depend on the network configuration and covariates, and are denoted by
ui(G� X) = u(G� X;εi), where εi = (εij)j �=i. Our objective is to learn about the (paramet-
ric) utility functions u(G� X; ·) using the data on G and X.

To make the model tractable, we rely on two main assumptions about the payoffs. We
start with a restriction on network depth and total number of links.

ASSUMPTION 1: Only connections up to distance D affect utility, and preferences are such
that players will never choose more than a total of L links.

The distance above refers to the length of the shortest path between two individuals,
denoted d(i� j;G). If D = 1, only direct connections are relevant (e.g., Currarini, Jackson,
and Pin (2009)). When D > 1, indirect connections also matter, and here most specifica-
tions in the literature use D = 2 (e.g., “friends of friends”). The limit L denotes the max-
imum number of links an individual would have (i.e., utility would be infinitely negative
if you have more than L links). This restricts our framework to networks with bounded
degree distributions, where nodes have a relatively small number of links, rather than
networks with approximately power-law degree distributions. Networks with such limited
degree distributions are found in several social science contexts (e.g., close friendships)
but not in others (e.g., Facebook).7 Together, the restrictions on depth and degree in As-
sumption 1 make payoffs depend on a finite number of direct and indirect connections
in the network. This is crucial for dimension reduction. For example, with D = 2, there
would be at most L direct alters and L × (L − 1) indirect alters that impact utility.

Our second assumption relates to the unobservable preference shocks, as well as the
support of the observable characteristics. We assume that the preference shocks do not
depend on the individual identities of the alters. Instead, there is one shock for each
possible direct connection, combined with their possible predetermined characteristics.
We further assume that the predetermined characteristics have finite support, and that
the unobserved shocks are independent of these characteristics.

ASSUMPTION 2: Individuals are endowed with L × |X | preference shocks, denoted
εl(x)� l = 1� � � � � L� x ∈ X , which correspond to the possible direct connections and their
characteristics. This vector of preference shocks is independent of X with a known distri-
bution (possibly up to some finite-dimensional parameter). In addition, the support of X is
finite.

This assumption implies that if two potential alters have the same observables, then
the ego in question is indifferent between them. Similar (though not identical) assump-
tions about homogeneity in preferences have been made in models of large games (e.g.,
Kalai (2004), Menzel (2016)) and in some matching models (e.g., Choo and Siow (2006),
Galichon and Salanie (2009)). This helps control the dimensionality of the problem, and
it can be a natural restriction in settings with many agents where individual identities are
unknown and irrelevant to the researcher. In addition, having a limited number of shocks
allows the model to retain a positive fraction of isolated individuals in equilibrium even

7For example, such a limitation is seen in the National Longitudinal Study of Adolescent to Adult Health
(also known as the “Add Health” study), a commonly used data set on social networks. Individuals nominate up
to five friends of each sex, and the number of reciprocated nominations is even smaller. The median number of
such links is one, and less than five percent of individuals have more than three links to the same sex. Similarly,
in data on networks among Indian villagers used in Jackson, Rodriguez-Barraquer, and Tan (2012), fewer than
1 per 1,000 respondents reached the caps of 5 or 8 nominations, respectively, for various kinds of social and
financial relationships (footnote 37, p. 1879).
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when the group under consideration is large.8 This assumption could be weakened some-
what, by extending the vector of shocks to include ones for indirect connections up to
distance D. In that case, the number of shocks would be |X | × L

∑D

d=1(L − 1)d−1 (for
L >
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where N(i) denotes the neighbors of node i (i.e., N(i) ≡ {j : G(i� j) = 1}) and | · | gives
the cardinality of a set. In the first line, the index function l(j) assigns neighbor j to the
lth link of node i and thereby assigns the preference shocks.11 The second line takes the
union of the neighbors of each friend but removes the friends themselves (N(i)) and
the reference individual ({i}) to find the number of distinct friends of friends. The third
line counts any links among the direct connections, and the fourth line ensures bounded
degree in equilibrium. Like related specifications in the literature, this uses a maximum
depth of D = 2, and has additively separable shocks for direct connections from some
known distribution.

As in most of the empirical games literature, we assume that observed choices corre-
spond to equilibrium play. Our solution concept is pairwise stability (Jackson and Wolin-
sky (1996)).

DEFINITION 1—Pairwise Stability: All links ij must be preferred by players i and j over
not having the link, and all non-existing links must be damaging to at least one of the
players:

∀i� j: G(i� j) = 1� ui(G� X) ≥ ui(G−ij� X) and uj(G� X) ≥ uj(G−ij� X); (i)

and

∀i� j: G(i� j) = 0� if ui(G+ij� X) > ui(G� X) then uj(G+ij� X) < uj(G� X)� (ii)

In the definition, G−ij denotes the mapping (k� l) 	→ G−ij(k� l) = G(k� l) if (k� l) �=
(i� j) and (k� l) 	→ G−ij(k� l) = 0 if (k� l) = (i� j). Analogously, G+ij denotes the mapping
(k� l) 	→ G+ij(k� l) = G(k� l) if (k� l) �= (i� j) and (k� l) 	→ G+ij(k� l) = 1 if (k� l) = (i� j).
Other solution concepts exist; see Bloch and Jackson (2006) or Jackson (2009). As dis-
cussed in those references, an advantage of pairwise stability is that it incorporates the
intuition that, in a social setting, agents are likely to communicate to form mutually desir-
able connections. This is not the case with Nash equilibrium, where absent links can still
be part of an equilibrium even though they would be mutually beneficial.

3. PREVIEW OF OUR RESULTS

Here, we provide a preview of the approach using a very simple case of specification (1).
In this example, individuals have at most one link (L = 1, also D = 1), and there are two
races: B (black) and W (white). This could describe a network of best friends, which
consists only of isolates and linked pairs. There are no externalities from links in such a
network, but it nevertheless illustrates the main features of our approach.

Outcomes can be expressed as ordered pairs, (x� y), for the individual’s race (x) and
the best friend’s race (y , where y = 0 if no best friend). For example, (B� W ) corresponds
to a black individual with a white best friend. These pairs represent the network types in
this model. (More generally, network types will involve a local adjacency matrix as well
as a vector of node characteristics such as (B� W ), but here the matrices are redundant.)
Utility depends on an individual’s network type, (x� y). The utility function (1) simplifies
here to ui(x� y) = fxy + εi(y), where the fxy , x� y ∈ {B� W }, are four parameters, and each
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distribution (up to a finite-dimensional parameter). Our goal is to use data on the linkages
in the network to learn about the parameters fxy .

First, we collapse the global graph and node characteristics (G� X) into the shares of
individuals of each network type, or type shares. For example, suppose, in a school with
500 students, there were 50 black individuals with a white best friend. The share of type
(B� W ) is 0.1 (the share of type (W � B) is also 0.1, as they must balance). We will search for
parameter values fxy that can generate the observed type shares while satisfying necessary
conditions for pairwise stability.

To do this, we start by classifying individuals based on which network types they would
not reject (i.e., they would be happy with all the links). For example, depending on the
preference shocks drawn, a black individual may prefer having a black best friend to being
alone, but may not prefer having a white best friend to being alone: that is, fBB +εi(B) ≥ 0
and fBW + εi(W ) < 0. Hence, the network type (B� W ) could not be an equilibrium out-
come for this individual, but (B� B) could be. We refer to these sets of network types that
individuals would not unilaterally deviate from as preference classes, generically denoted
as H. For this individual, the preference class would be H = {(B� 0)� (B� B)}. (Because
there are no connections to be dropped from an isolated type, e.g., (B� 0), every prefer-
ence class contains one such type.) There are four possible preference classes for blacks
in this example: H1 = {(B� 0)}, that is, prefers to be alone; H2 = {(B� 0)� (B� B)}, that
is, prefers a black best friend; H3 = {(B� 0)� (B� W )}, that is, prefers a white best friend;
H4 = {(B� 0)� (B� B)� (B� W )}, that is, prefers a best friend of either race. The preference
classes for whites are similar, replacing the first race in each type with W .

Each preference class corresponds to some region in the space of the shocks, ε, that de-
termines which network types would be “acceptable” to an individual with those shocks
(i.e., an individual with shocks from the region for preference class H would not unilat-
erally deviate from any network type in H, but would deviate from any type not in H).
Hence, given a distribution for the preference shocks and proposed values for the pref-
erence parameters, one can compute the probability that individuals fit into each pref-
erence class. In this example, there are simple thresholds in ε(B) and ε(W ) based on
the parameters fxy that yield these probabilities. With more elaborate models, the prefer-
ence class probabilities can be computed, for example, via Monte Carlo integration (see
Section 7 and Supplemental Material Appendix D.7.1 (de Paula, Richards-Shubik, and
Tamer (2017))).

Given the preference class probabilities derived from a vector of structural parame-
ters, we can then generate predicted type shares by allocating the individuals from each
preference class to the possible network types. To do this, we define allocation parame-
ters, denoted αH(·), one for each type in each class, which designate the proportion of
individuals allocated from preference class H to network type “·”. For example, the pre-
dicted share of blacks with a white best friend, type (B� W ), is Pr(H1|B)αH1(B� W ) +
Pr(H2|B)αH2(B� W ) + Pr(H3|B)αH3(B� W ) + Pr(H4|B)αH4(B� W ) (multiplied by the pro-
portion of blacks in the school to obtain the share among all students).

The key to our approach is to provide restrictions on the allocation parameters that
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formed and the network would be unstable. Hence, for any pair of types, the product of
the measures of individuals of one type who would prefer to add links to individuals of
the other type must be zero. This defines a quadratic objective function which in equilib-
rium has to be zero. Finally, the predicted proportions of types must match the observed
proportions of types in the network, which defines a set of linear constraints.

4. NETWORK TYPES AND PREFERENCE CLASSES

Now we formalize and extend the concepts discussed in the preceding example. Our
proposed identification strategy is built on the notion of predefined network types. These
describe the local network structure around a given individual, along with the predeter-
mined characteristics of each person (or node) in this local subnetwork. The size of the
local subnetworks depends on the preference specification, specifically the parameters D
and L that control the relevant depth in the network and maximum number of links. The
predetermined characteristics are fixed attributes, such as sex and race, or predetermined
behaviors (i.e., those which precede the formation of the network), for example, the ed-
ucation levels of coworkers at a firm. Intuitively, then, network types can be described in
words, for example, “a female connected to two females and one male,” “an unconnected
low-income male,” “a female connected to another female with two other friends,” and
so on.

More formally, a network type is characterized by a local adjacency matrix, A, and
a vector of node characteristics, v. The matrix A describes the local subnetwork up to
distance D from the reference individual, who is called the ego of the network type. It is
symmetric and has one row and column for the ego and one for each possible alter up
to distance D. The first row corresponds to the ego and indicates that individual’s links
with a 1 in the appropriate columns, and 0 otherwise. The next L rows correspond to the
possible direct alters, then the next L(L − 1) rows to the possible alters at distance 2,
and so on. This gives a total of 1 + L + L(L − 1) + L(L − 1)2 + · · · + L(L − 1)D−1 =
1 + L

∑D

d=1(L − 1)d−1 rows.12 The vector v contains the predetermined characteristics of
the ego and the alters, in the same order as the rows of A. The first element of v is the
characteristic of the ego, denoted v1. The subsequent elements are the characteristics of
the possible alters, belonging to X ∪ {0}, where 0 denotes the absence of an alter in that
position.13 Thus we have the following:

DEFINITION 2—Network Type: Fix D, L, and X . A network type t is characterized by
t = (A� v), where A is a square matrix of size 1 + L

∑D

d=1(L − 1)d−1 and v is a vector of
same length as the number of rows in A. This matrix describes the local subnetwork that is
utility-relevant for an individual of type t. The vector v contains the predetermined char-
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Next, we note that under Assumptions 1 and 2, utility depends only on an individ-
ual’s network type. Assumption 1 limits payoffs to depend on a subnetwork represented
by A, and Assumption 2 restricts the unobserved shocks to depend on the character-
istics listed in v, not the individual identities of the alters. Accordingly, we rewrite the
utility function as ui(G� X) = u(A�v;εi). The vector εi contains one preference shock
for each potential direct connection and each possible characteristic of those connec-
tions (i.e., each element of L × |X |). In Example 1, there would be four shocks: εi =
(εi1(B)� εi1(W )� εi2(B)� εi2(W )).15 For the two example types shown in Figure 2, the util-
ities would be f (B� B) + εi1(B) + f (B�W ) + εi2(W ) + ω for the triangle with mutual
friends and f (B� B) + εi1(B) + f (B� W ) + εi2(W ) + ν for the tree with a friend of a friend
(the only difference is whether ω or ν appears).

In order to make predictions from the model, we will categorize individuals based on
their preferences over network types. For this, we define preference classes, the second
important concept in our framework. These are sets of types that individuals would not
unilaterally deviate from, given their own preferences. In other words, individuals would
not reject any of their links if assigned to one of the types in their preference class, but
would reject a link if assigned to a type outside their preference class. Naturally, each
preference class corresponds to a region in the support of ε: individuals with shocks in the
same region (and with the same predetermined characteristics) would be content with the
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shock εi2(B) is large enough so that i
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The allocation parameters yield the measure of individuals of network type t as follows:
μv1(t)

∑
H PH|v1(t)αH(t), where μv1(t) is the measure of individuals with characteristic v1(t)

(the characteristic of the ego in type t). The proportion of individuals of network type t
is this divided by the total measure μ. This provides the exact link between the data and
the underlying preferences. The measures or proportions of individuals of each network
type can be consistently estimated, and we will try to match these with predictions from
the model.

5. IDENTIFICATION WITH NETWORK TYPES

In this section, we show how to use the model to map the observed proportions of in-
dividuals of each network type (or more succinctly, the type shares) into restrictions on
the preference parameters. We develop two general conditions on the allocation parame-
ters that are necessary for pairwise stability, which can then be used to collect preference
parameters that could be compatible with the observed type shares. If, using allocation pa-
rameters that satisfy these conditions, a vector of structural preference parameters cannot
predict the observed type shares, then that vector is not compatible with the observed net-
work. Otherwise, if such a prediction can be made, the vector is included in the recovered
set. The two conditions are as follows (their intuition is discussed after the theorem):

CONDITION 1—Existing Links: All existing links are pairwise stable. For any type t and
preference class H, t /∈ H =⇒ αH(t) = 0.

CONDITION 2—Nonexisting Links Between Distant Individuals: There are no mutu-
ally beneficial links to add between individuals who are at a distance greater than 2D
(d(i� j;G) > 2D). For every pair of types t� s where the egos of both types have fewer
than L links, and for the pair of types t� s that would result if a link were added between
two individuals of these types who are greater than 2D from each other,

(
μv1(t)

∑
H̃∈H

PH̃|v1(t)αH̃(t)1t̄∈H̃

)
·
(

μv1(s)

∑
Ȟ∈H

PȞ|v1(s)αȞ(s)1s̄∈Ȟ

)
= 0�

The theorem below provides our general result on identification. It takes as given the
predicted probabilities of the preference classes, P·|·, which are yielded by a parameter-
ization of the utility function. The theorem provides necessary conditions for a pairwise
stable network with specified type shares (i.e., the observed shares) to exist given this
distribution of preference classes in the population. To state the theorem, we denote the
vector of type shares as π ≡ (πt)t∈T , where the element πt is the proportion of individuals
in the network who are of network type t. We maintain in this paper that our sample con-
tains information on exactly these type shares.17 For a given vector π and a distribution
of preference classes {PH|v1}
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(a) Initial Types (b) Resulting Types
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for these types gives the measure of individuals of type t (αH̃(t) are allocated from each
preference class H̃) who also have type t̄ in their preference classes (1t̄∈H̃). Such individ-
uals would prefer to have a second white friend (who has another friend), because their
preferences satisfy fBW + ν + ε2(W ) ≥ 0.18 The expression inside the second parentheses
gives the analogous measure of individuals of type s who also have s̄ in their preference
classes. One or the other of these measures must be zero. In other words, either none of
the individuals of type t want a second white friend (who has another friend), or none of
the individuals of type s want a second black friend (who has another friend), or both. If
this condition is violated, there would be individuals of types t and s in the network who
would prefer to be types t̄ and s̄, respectively. These individuals would prefer to add a link
with each other, and so the network would not be pairwise stable.

Taken together, Conditions 1 and 2 restrict the preference classes that can be used to
generate the predicted type shares for types t and s. Hence, in order to match the observed
type shares, a given parameterization must place sufficient probability on the allowable
preference classes for these types (i.e., those with type t but not t̄ or those with type s but
not s̄).

The proof of Theorem 1 formalizes the preceding discussion by showing that, if expres-
sion (i) holds for all existing links and (ii) holds for all nonexisting links, then Conditions
1 and 2 must be satisfied. One note on this result is that it does not require the existence
of equilibrium for every possible parameterization and realization of the variables (recall
that nonexistence is possible under pairwise stability). If a particular parameterization
cannot generate a pairwise stable network, then there may be no vector of allocation pa-
rameters satisfying Conditions 1 and 2. In that case, this parameterization would not be
included in the identified set. If no parameterization can match the observed type shares
while satisfying Conditions 1 and 2, then the identified set would be empty. We would con-
clude that the observation cannot be an equilibrium outcome under the model as spec-
ified, and so we might reject the model. Thus, our framework can be used with models
where nonexistence is possible, for example, when links have negative externalities.

6. IMPLEMENTATION

We now describe how to use Theorem 1 to find values of the preference parameters
that could be compatible with the observed network. First, we show that the necessary
conditions in the theorem can be verified using a quadratic programming (QP) problem.19

Then, we show how consistency of the estimators for the type shares from a single, large
network can be obtained under a sampling approach to inference.

6.1. Formulation as Quadratic Programming Problem

Condition 2 provides a quadratic function of the allocation parameters that must equal
zero in equilibrium. Using this to develop an objective function, a QP problem based on
Theorem 1 can be defined as follows. The variables in the problem are those allocation

18The utility of type t̄ is 2fBW + 2ν + ε1(W ) + ε2(W ), and removing either link results in type t (note the
symmetry of t̄) with utility fBW + ν + ε1(W ). Hence, type t̄ is in a preference class when fBW + ν + ε2(W ) ≥ 0.
Similarly, type s̄ is in a preference class when fW B + ν + ε2(B) ≥ 0.

19A similar approach to “solving” for the identified set is seen in Honoré and Tamer’s (2006) use of a
linear programming problem in a nonlinear panel data model. For a recent interesting example of the use of a
quadratic programming problem in economics, see Kitamura and Stoye (2013).
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parameters that are not set to zero by Condition 1: {αH(t) : t ∈ H}, or α for short. The
objective function derived from Condition 2 is α�Qα, where the matrix Q is described
in detail below. A set of linear constraints impose the requirement that the predicted
type shares match the observed shares ( 1

μ

∑
H μv1(t)PH|v1(t)(θ)αH(t) = πt). There are also

adding-up and positivity constraints on the allocation parameters. The QP problem is thus

min
{αH (t):t∈H}

α�Qα subject to:

1
μ

∑
H

μv1(t)PH|v1(t)(θ)αH(t) = πt� ∀t;
∑
t∈H

αH(t) = 1� ∀H; αH(t) ≥ 0�

(3)

As we establish further below, this problem has an optimal value of zero if and only
if the conditions of Theorem 1 are satisfied. Therefore, given a vector of preference pa-
rameters θ (which produces a probability distribution of preference classes, {PH|v1(θ)}),
if a solution can be found yielding a value of zero, that parameter vector belongs in the
recovered set.

The assembly of the programming problem is straightforward except for the objective
matrix Q, which encodes Condition 2. This is a square matrix that has one row (and col-
umn) for each variable in the problem, so the entries of Q correspond to pairs of al-
location parameters such as αH(t) and αG(s). The entries equal 1 for those pairs that
could yield a positive value in the expression for Condition 2, and otherwise equal 0.
Specifically, Q[αH (t)�αG(s)] = 1t̄∈H · 1s̄∈G, where t̄ and s̄ are the types that would result if a
link were added between two individuals of types t and s (as defined in the condition).
This entry yields the term (αH(t)1t̄∈H) · (αG(s)1s̄∈G) in the objective function α�Qα. Sim-
ilarly, the expression in Condition 2 for this pair of allocation parameters includes the
term (μv1(t)PH|v1(t)αH(t)1t̄∈H) · (μv1(s)PG|v1(s)αG(s)1s̄∈G). Hence, as long as μv1(·) and P·|· are
strictly positive, the former can be used to assess whether the latter is nonzero.20

The example below illustrates the matrix Q in the simple model from Section 3.

EXAMPLE 2: Let preferences be given by (1), with D = 1, L = 1, and X = {B� W }. Here,
network types can be described using just the vectors of characteristics v = (v1� v2). Pref-
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All entries in that row are zero because the preference class associated with that alloca-
tion parameter, H1 = {(B� 0)}, contains only the isolated type with a black ego. Hence,
1t̄∈H1 = 0 for any type t̄ that could be obtained by adding a link. There are nonzero entries
in six rows (and columns) of Q: those corresponding to allocation parameters α2(B� 0),
α3(B� 0), α4(B� 0), α6(W � 0), α7(W � 0), and α8(W � 0). These parameters all indicate iso-
lated individuals who would prefer to have a friend. (Because L = 1, only isolated in-
dividuals can add a link.) For example, in the row corresponding to α3(B� 0), there are
1’s in the columns corresponding to α7(W � 0) and α8(W � 0). The preference classes as-
sociated with these parameters are H3 = {(B� 0)� (B� W )}, H7 = {(W � 0)� (W � B)}, and
H8 = {(W � 0)� (W � W )� (W � B)}, respectively. To denote the types, let t = (B� 0) (isolated
black) and s = (W � 0) (isolated white), and let t̄ = (B� W ) (black with white best friend)
and s̄ = (W � B) (white with black best friend), which are the the types that would result if
a link were added between two individuals of types t and s. Thus, we have 1t̄∈H3 · 1s̄∈H7 = 1
and 1t̄∈H3 · 1s̄∈H8 = 1.

The construction of Q in the example above is fairly simple because it is feasible to eval-
uate the expression 1t̄∈H · 1s̄∈G for each entry individually. Given the corresponding pair of
allocation parameters αH(t) and αG(s), the types t and s determine the types t̄ and s̄ that
would result if a link were added, and it is then easy to check whether t̄ and s̄ are con-
tained in H and G, respectively. However, for larger matrices it may be too burdensome
to loop through the entries individually. Instead, we suggest first constructing a prelimi-
nary matrix S, with the same dimensions and organization as Q, whose entries S[αH (t)�αG(s)]
are defined as 1t̄∈H rather than 1t̄∈H · 1s̄∈G. Conceptually, the difference between S and
Q is that the entries of S reflect only the preference class associated with the allocation
parameter in the row, rather than those of both the row and the column. This makes it
faster to construct S because operations can be applied row-by-row rather than element-
by-element. The matrix Q then simply equals the Hadamard (i.e., entrywise) product of
S with its transpose: Q = S ◦ S�. (See Supplemental Material Appendix D.7.2 for further
details.)

With the objective matrix Q defined as above, we can establish the following result.
(The proof appears in Appendix A.)

THEOREM 2: Given a probability distribution of preference classes {PH|v1(θ)}, there exists a
vector of allocation parameters α yielding type shares {πt} while satisfying Conditions 1 and 2
if and only if the optimal value of QP problem (3) is zero.

This theorem provides a computational avenue to implement our approach. Because
this pertains to identification, however, the population type shares are assumed to be
known. In order to accommodate data from a finite sample, the QP problem must be
modified to allow for some error in the estimated shares. The approach we take is to add
slack variables that define fixed “bands” around the type shares, the width of which are a
function of the sample size.21 The modified QP problem then verifies whether a structural
parameter vector can yield a prediction within these bands while satisfying Conditions
1 and 2.

21
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Finally, we note that the objective function α�Qα may not be convex because, while
the matrix Q is symmetric, it may be indefinite, as is the case in the example above. This
rules out some standard QP solvers, but more general constrained nonlinear optimization
routines can be used instead.22 In the simulation exercises in Section 7, we find that the
problem solves quickly using an active set algorithm in the program KNITRO. Impor-
tantly, because the optimal value is known (i.e., α�Qα = 0), it is trivial to ascertain that a
global rather than local optimum has been reached. On the other hand, one must exercise
caution so that positive local minima do not erroneously lead to dismissal of a parameter
value.

6.2. Consistency of Type Shares

The parameter of interest in our setup is the vector that characterizes the payoff struc-
ture, θ, for a given large network. The main insight from Theorems 1 and 2 is that, knowing
the type shares π, we have a mapping that yields the identified set for θ. We now briefly
discuss inference and show how it is possible to obtain consistent estimates of π for this
mapping.

Assuming that we do not observe the full network (and hence do not know π), we use a
sampling approach to inference whereby we maintain that the observed data are a simple
random sample from this full network that records the types only. The central question in
this sampling approach is how close the sampled quantities are to the true quantities that
can be obtained if we had access to the full network. Here, the possibility of inverting from
a sample to gain information on the population depends crucially on the sampling method
employed. In our case, we maintain the assumption that we have a random sampling
scheme where individuals are drawn independently (conditional on the realized network)
and their types are recorded, which requires registering the features of their neighboring
connections. The snowball sampling procedure defined in Goodman (1961), which starts
with an initial random sample and interviews connections up to a specified distance, is an
example of such a sampling scheme.23 The only source of variation here is the random
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PROPOSITION 1: Under random sampling (on the underlying,
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FIGURE 5.—Equilibrium type shares in first simulation exercise. Notes: Points illustrate the full set of
equilibrium type shares under parameter values fBB
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FIGURE 6.—Identified set from one finite network in first exercise. Notes: Points illustrate the identified set
obtained using type shares from one finite network (shown with triangles in Figure 5). Diamonds indicate true
parameter values: fBB = 0�40, fBW = 0�20, fW B = 0�15, and fW W = 0�50.

here (see Supplemental Material Appendix B).29 The six preference shocks are drawn
independently from a standard normal distribution, but they are assigned to links in de-
scending order (within alter characteristic). That way, the particular convention we use to
select the representation, (A� v), for each network type does not impact their utility (see
Supplemental Material Appendix D.3).

To generate the data, we simulate a number of finite networks with n = 500 individuals
(100 blacks and 400 whites, reflecting μB/μW = 1/4), using a procedure described in Sup-
plemental Material Appendix D.4. Figure 7 plots the shares of certain combinations of
types in these simulated networks, to illustrate the variation that can arise for a fixed vec-
tor of preference parameters but with different realizations of shocks and equilibria. One
network, selected at random, serves as the observation we use to recover the identified

29The parameter values are (fBB� fBW � fW B� fW W ) = (−0�9�−1�5�−1�7�−0�7), ν = 0�2, and ω = 0�2. Fig-
ure D.7 in the Supplemental Material shows the degree distributions. The average degree in the simulated
networks matches the average degree for same-sex friendships in Add Health.
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FIGURE 7.—Equilibrium type shares in second simulation exercise. Notes: Figure plots shares of cer-
tain combinations of types: types with any own-race friends (x: x friend(s)), any opposite-race friends (x: y
friend(s)), any indirect friends, and any mutual friends. Points represent the shares from different simulated
networks, and triangles indicate the shares from the network randomly selected to use as the observation.

set (indicated with triangles in Figure 7). Supplemental Material Appendices D.6 to D.8
describe the specific procedures we then use to formulate and solve the QP problem (for
a given parameter vector) and to search through the parameter space. One key point is
that, to save memory and improve computational speed, we only consider network types
that are either observed in the data or adjacent to an observed type (i.e., they can be
reached via addition or deletion of one link). The search procedure uses Markov Chain
Monte Carlo (MCMC) algorithms (Supplemental Material Appendix D.8).

Projections of the identified set are shown in Figure 8. The identified range for fW B

appears to be unbounded from above, as in the previous example, while fBW is bounded
in both directions. Also, for both blacks and whites, we would not be able to conclude
that there is a preference for same-race over different-race friends (i.e., the fact that
fBB > fBW and fW W > f W B f

BB and fW W
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FIGURE 8.—Identified set in second exercise. Notes
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suggests that additional gains in performance may be possible with further advances in
solution algorithms.

8. CONCLUSION

We conclude with a brief discussion about empirical settings where our framework
might apply, and where it might not. The main consideration is whether the assumption
of bounded degree is reasonable in a particular context. The maximum degree and the
degree distribution are, of course, observable in a given data set, and, depending on the
sampling scheme (and the model), one can determine whether a specific bound is rea-
sonable to impose. For example, in the social and financial networks studied in Jackson,
Rodriguez-Barraquer, and Tan (2012), a negligible portion of the sample reached the caps
of 5 or 8 nominations for each type of relationship. This suggests that the bounded degree
assumption may be reasonable in analyses of informal insurance as well as close friend-
ships. On the other hand, bounded degree would not apply in online social networks. Nor
would it apply in certain markets for intermediate goods or financial networks where firms
with many connections (i.e., “hubs”) are observed. Economically, the difference between
settings with bounded degree distributions versus approximately power law distributions
may relate to the cost of links. If there are substantial fixed costs, relative to a finite bud-
get of time, for example, individuals would be limited in the number of links they can
maintain.

APPENDIX A: PROOFS OF THEOREMS 1 AND 2

A.1. Theorem 1

PROOF: Given a pairwise stable network G, predetermined characteristics X, and pref-
erence shocks ε (for all the individuals in the network), partition individuals by their
preference class H and define αH(t) as the fraction of individuals in this pairwise sta-
ble network in preference class H who are of network type t. This allocation yields the
observed proportions of network types; that is, (μv1(t)/μ)

∑
H PH|v1(t)αH(t) = πt .

If the network G is pairwise stable, then all existing links satisfy expression (i) in Def-
inition 1. Hence, for any individual i, whose network type is characterized as (A� v), we
have u(A� v;εi) ≥ u(A−l� v;εi)�∀l = 1� � � � � L. By definition, this type is in the individual’s
preference class. Hence, αH(t) > 0 only if t ∈ H, and so Condition 1 is satisfied.

To show that Condition 2 is satisfied, consider an arbitrary pair of types (t� s) where
both types have fewer than the maximum L links. Let (t̄� s̄) be the pair of types that
would result if a link.88.
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in the preference class of any individuals of type s in the network. Therefore, the measure
μv1(s)

∑
Ȟ∈H PȞ|v1(s)αȞ(s)1s̄∈Ȟ is zero. Thus, at least one of the measures expressed in the

equation for types (t� s) in Condition 2 must be zero, which gives us the condition. Q.E.D.

A.2. Theorem 2

PROOF: Condition 2 is satisfied if and only if the objective function is equal to zero.
This is because, as long as μv1(·) and P·|· are strictly positive,

μv1(t)μv1(s)

∑
H̃∈H

∑
Ȟ∈H

PH̃|v1(t)PȞ|v1(s)αH̃(t)αȞ(s)1t∈H̃1s∈Ȟ = 0

⇔
∑
H̃∈H

∑
Ȟ∈H

αH̃(t)αȞ(s)1t∈H̃1s∈Ȟ = 0�

The first set of constraints in (3) is to match the observed proportions of network types
(πt). The second and third sets of constraints simply require that allocations from a given
preference class add up to 1 and are nonnegative. Finally, Condition 1 is encoded by the
fact that allocation parameters are only defined for the types in each preference class (i.e.,
the variables in the problem are {αH(t) : t ∈ H}, not all {αH(t)}). Hence, from each pref-
erence class, there are no allocations made to types not in that preference class. Q.E.D.
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