INFERENCE OF SIGNS OF INTERACTION EFFECTS IN SIMULTANEOUS GAMES WITH INCOMPLETE INFORMATION

BY UREO DE PAULA AND XUN TANG¹

, 11,1	لم ۱۰۰۰	, , , ,	د هر هر	. , .	. 1	, ,	, , (S.)		(2009))
. , t N	, , , , ,	(2010)).		• , • , • ,			, (B .	, H	, K ,

. The second contract of the second contract

Assumption 1: $x \in X$, $F_{|X}(\cdot|X) = \prod_{i \leq N} F_{i|X}(\cdot|X) = \mathbb{R}^N$.

$$S_i(X - i) = \begin{cases} 1 & \text{if } u_i(X) + i(X) \\ 0 & \text{if } X \end{cases} \mathbb{E}[S_j(X - i) | X - i] - i \ge 0,$$

(1)
$$p_i(x) = F_{i|X=x} u_i(x) + i(x) p_j(x) i = 1$$
 N

(3)
$$i(x) \equiv \tilde{i}(x) - p_i^*(x) \hat{i}(x)$$

$$= \int_{p^l \in \mathcal{L}_x^+} p_i^l(x) \hat{i}(x) d_x - \int_{p^l \in \mathcal{L}_x^+} p_i^l(x) d_x \int_{p^l \in \mathcal{L}_x^+} \hat{i}(x) d_x$$

$$\tilde{f}_{i}^{*}(x) - p_{i}^{*}(x) \quad \tilde{f}_{i}^{*}(x)$$

$$= \int_{0}^{1} h_{i}(z) z \, d_{i \, x}^{*}(z) - \int_{0}^{1} z \, d_{i \, x}^{*}(z) \int_{0}^{1} h_{i}(z) \, d_{i \, x}^{*}(z)$$

 $z \equiv p_i^l(x) \dots \tilde{r}_{ix} \dots \tilde$

$$\begin{split} (Z \ h_i(Z)) &= \mathbb{E} \ Z - \mathbb{E}(Z) \ h_i(Z) - \mathbb{E}(h_i(Z)) \\ &= \mathbb{E} \ (Z - \mathbb{E}(Z)) \ h_i(Z) - h_i(\mathbb{E}(Z)) \\ &+ \mathbb{E} \ (Z - \mathbb{E}(Z)) \ h_i(\mathbb{E}(Z)) - \mathbb{E}(h_i(Z)) \\ &= \mathbb{E} \ (Z - \mathbb{E}(Z)) \ h_i(Z) - h_i(\mathbb{E}(Z)) \end{split}$$

 $^{^{7}}T_{\rm c}$, ϵ , $W_{\rm c}$, ϵ , ϵ

 T_{i_1, \dots, i_n} x_i x_i

$$\begin{split} & () \quad () \quad$$

ASSUMPTION 2:
$$u_i(x_i)$$
, $u_i(x) = u_i(x_i)$, $u_$

 $T_{i,i}$ $\mathfrak{g}_{i,i}$ $t_{i,i}$ $t_{i,j}$ $t_{i,j}$ tBNE (x_i, x_i) (x_i, x_i)

$$_{i}(x_{i})\equiv \mathbb{E}\ D_{i\,g}\quad D_{j\,g}\quad X_{g}\in \ _{i}(x_{i})$$

$$-\operatorname{\mathbb{E}}[D_{i\:g}|X_g\in \ _i(x)]\mathbb{E} \quad _{j\neq i} D_{j\:g}\:X_g\in \ _i(x_i)$$

PROPOSITION 2: 1 2 ... () ... x, ... ($_{i}(x)$) = ... ($_{i}(x_{i})$) f ... i f $_{x_{i}}^{*}$... f ... f $_{i}(x_{i}) \neq 0$.

$$(5) \qquad _{i}(x_{i}) = \underset{p \in \mathcal{L}_{x_{i}}^{*}}{\mathbb{E}} \ D_{i} \quad D_{j} \quad p \ X \in _{i}(x_{i}) \ d \ _{x_{i}}^{*}$$

$$- \underset{p \in \mathcal{L}_{x_{i}}^{*}}{\mathbb{E}} [D_{i}|p \ X \in _{i}(x_{i})] d \ _{x_{i}}^{*}$$

$$\cdot \quad \underset{p \in \mathcal{L}_{x_{i}}^{*}}{\mathbb{E}} \ D_{j} \ p \ X \in _{i}(x_{i}) \ d \ _{x_{i}}^{*}$$

$$= \underset{p \in \mathcal{L}_{x}^{*}}{p_{i}} p_{j} \ d \ _{x_{i}}^{*} - \underset{p \in \mathcal{L}_{x}^{*}}{p_{i}} d \ _{x_{i}}^{*} \qquad p_{j} \ d \ _{x_{i}}^{*}$$

 $p \in [0 \ 1]^N$

4. TESTING MULTIPLE BNE AND INFERRING INTERACTION SIGNS

At t = 0, t = 0,

Fig. 1. N = 2, N

 i, \ldots, ℓ , $i \in X$:

 $H_i^0: _i(x) = 0$

 H_i^1 : $_i(x) \neq 0$

$$FWE_P = P_P\{x : x \in A_i, x \in H_i^0: x(x) = 0, x \in i \in I_0(P)\}$$

$$T_{G\,i}(\{x\}) \equiv \frac{\hat{\mu}_{ij}(\{x\})}{\hat{\mu}_0(\{x\})} - \frac{\hat{\mu}_i(\{x\})\hat{\mu}_j(\{x\})}{(\hat{\mu}_0(\{x\}))^2}$$

 B_{i} , i ϵ_{i} , μ_{i} , ϵ_{i} , ϵ_{i} , ϵ_{i}

$$G^{1/2}$$
 $\mathbf{T}_{G}(\{x\}) - \Delta(x) \xrightarrow{d} N$ $\mathbf{0}_{N}$ $\mathbf{V}(\{x\})\boldsymbol{\Sigma}(\{x\})\mathbf{V}(\{x\})'$
 $G \to \infty$

 $\begin{array}{l} \Delta(x) \equiv (\ _{i}(x))_{i=1}^{N}. \ T. \ _{i} \ J. \ _{i} \ V(\{x\}) \ _{i} \$

$$\begin{array}{cccc} \mu_{(m)}(\{x\}) & V_{i\;(m)}(\{x\}) \\ \mu_{0}(\{x\}) \colon & \sum_{j \neq i} (-\frac{\mu_{ij}(\{x\})}{\mu_{0}(\{x\})^{2}} + \frac{2\mu_{i}(\{x\})\mu_{j}(\{x\})}{\mu_{0}(\{x\})^{3}}) \\ \mu_{i}(\{x\}) \colon & -\sum_{j \neq i} \frac{\mu_{j}(\{x\})}{\mu_{0}(\{x\})^{2}} \\ \mu_{j}(\{x\}) \colon & -\frac{\mu_{i}(\{x\})}{\mu_{0}(\{x\})^{2}} \\ \mu_{ij}(\{x\}) & \mu_{ji}(\{x\}) \colon & \frac{1}{\mu_{0}(\{x\})} \\ \mu_{ik}(\{x\}) \colon & 0 \end{array}$$

, and 15 We also a section of the section of \hat{c}_k , the \hat{c}_k and \hat{c}_k

. The energy ϵ is ϵ is ϵ , ϵ . ϵ
$\hat{V}_i(_i(x))\hat{\Sigma}(_i(x))\hat{V}_i(_i(x))'/G^{-1/2}$
\times T _{G i} (_i (x)) - _i (x) $\xrightarrow{d} \mathcal{N}(0\ 1)$. G $\rightarrow \infty$
$\hat{\mathbf{y}}_{i}(\mathbf{x}) = \hat{\mathbf{y}}_{i}(\mathbf{x}) + \mathbf{$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

$$D_{i\;g} = 1 \ u_i - W_g \ \sum_{j \neq i} \ p_j^1 \ - (1 - W_g) \ \sum_{j \neq i} \ p_j^2 \ - \ _{i\;g} \geq 0$$

ON EFFECTS

i = 3
[0.000, 1.000] [0.000, 1.000] [0.000, 1.000] [0.000, 1.000] [0.000, 1.000] [0.000, 1.000]

TABLE IV
FINITE SAMPLE PERFORMANCE: TEST OF SIGNS OF INTERACTION EFFECTS

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			G = 5000		G = 10,000		
$\begin{array}{l} X_2 = -1/2 \begin{bmatrix} 0 & 003 & 0 & 359 \end{bmatrix} \begin{bmatrix} 0 & 000 & 0 & 520 \end{bmatrix} \begin{bmatrix} 0 & 000 & 0 & 714 \end{bmatrix} \begin{bmatrix} 0 & 000 & 0 & 577 \end{bmatrix} \begin{bmatrix} 0 & 000 & 0 & 790 \end{bmatrix} \begin{bmatrix} 0 & 000 & 0 & 925 \\ 0 & 000 & 0 & 483 \end{bmatrix} \begin{bmatrix} 0 & 000 & 0 & 643 \end{bmatrix} \begin{bmatrix} 0 & 000 & 0 & 834 \end{bmatrix} \begin{bmatrix} 0 & 000 & 0 & 702 \end{bmatrix} \begin{bmatrix} 0 & 000 & 0 & 888 \end{bmatrix} \begin{bmatrix} 0 & 000 & 0 & 986 \\ 0 & 000 & 0 & 888 \end{bmatrix} \begin{bmatrix} 0 & 000 & 0 & 643 \end{bmatrix} \begin{bmatrix} 0 & 00$		= 0 8	= 09	=10	= 0 8	= 0 9	= 10
	$X_2 = -1/2$ $X_3 = -1$ $X_1 = 2$	[0 003 0 359] [0 000 0 483] [0 323 0 004]	[0 000 0 520] [0 000 0 643] [0 459 0 000]	[0 000 0 714] [0 000 0 834] [0 667 0 000]	[0 000 0 577] [0 000 0 702] [0 484 0 000]	[0 000 0 790] [0 000 0 888] [0 736 0 000]	[0 000 0 925] [0 000 0 986] [0 910 0 000]
73 = 5 [0 500 0 004] [0 450 0 000] [0 755 0 000] [0 545 0 000] [0 704 0 000] [0 550 0 000	$X_3 = 3$	[0 300 0 004]	[0 496 0 000]	[0 735 0 000]	[0 545 0 000]	[0 764 0 000]	[0 930 0 000]

1, strateic, eiffcpts a srat-dependent form, replayer1, srates the rstra

 $G_{i,j}$. G_{i

INTERACTION EFFECTS IN SIMULTANEOUS GAMES

 $\label{eq:table VI} \text{Multiplicity Tests (X} = \text{Hour of Day)}$

		:55 , , , , , :55 , ,	G
A . , .	W. e RW	$33 \ 32^* T_1^{\dagger} > T_3^{\dagger} > T_2^{\dagger} > 0$	26,152
N 1	W. e RW	386 $T_3 > T$	6534

M S ()			<i>t</i> D . ,		
		N 1 ,	م 5 4	5 6 ,	9 10 ,
1	W. e. a., RW G	$\begin{array}{c} 0.77 \\ T_3 > T_2 > 0 > T_1 \\ 2201 \end{array}$	$ \begin{array}{c} 4 94 \\ T_2 > T_1 > T_3 > 0 \\ 2201 \end{array} $	$\begin{array}{c} 3 \ 22 \\ T_2 > T_1 > T_3 > 0 \\ 2200 \end{array}$	$ \begin{array}{c} 2 27 \\ T_1 > T_3 > T_2 > 0 \\ 2199 \end{array} $
2	W. c. z. RW G	$ \begin{array}{c} 0.73 \\ T_2 > T_3 > 0 > T_1 \\ 2157 \end{array} $	$T_3 > 0 > T_1 > T_2$ 2220	$T_2 > T_1 > T_3 > 0$ $T_2 > T_1 > T_3 > 0$	$ \begin{array}{c} 248 \\ T_2 > T_1 > T_3 > 0 \\ 2153 \end{array} $
3	W. e RW G	$ \begin{array}{c} 496 \\ T_2 > T_3 > T_1 > 0 \\ 2176 \end{array} $	$\begin{array}{c} 19.06^* \\ T_3^{\dagger} > T_2^{\dagger} > T_1^{\dagger} > 0 \\ 2141 \end{array}$	$\begin{array}{c} 26\ 07^* \\ T_1^{\dagger} > T_3^{\dagger} > T_2^{\dagger} > 0 \\ 2177 \end{array}$	$\begin{array}{c} 2 \ 92 \\ T_1 > T_3 > 0 > T_2 \\ 2168 \end{array}$

TABLE VII :55 min vs. not :55 min (X = Hour of Day, Market Size)

7. CONCLUSION

I also a consequence of the cons المتحدث والإرارات والأرأد والمحالين المتحدد والإرارات والمتحد والمتحدد والإرارات والمتحدد and a graph a graph and a state of the contract of the contrac $\epsilon_{m{\mu}}$, $^{\prime}$, $^{\prime}$ e contrata de la filipa de la la alata 🚜 el a satura asara a da escribar a sera a caractería. and the first of the \mathbf{I} , $\epsilon\epsilon\epsilon$, \mathbf{j} , and the \mathbf{j} , $\epsilon\epsilon$, ϵ , - هورينياً بديان دارينه هو داريني کي دارين ديان ديان ديان ديان هو کاري دارين هو ويان داري هو ديان ديان هو ديان and the second of the second o $oldsymbol{\mu}_{oldsymbol{i}}$, $oldsymbol{e}_{i,i,j}$, $oldsymbol{e}_{i,j}$, $oldsymbol{\mathrm{E}}_{i,j}$, $oldsymbol{\mathrm{E}}_{i,j}$, $oldsymbol{\mathrm{E}}_{i,j}$, $oldsymbol{\mathrm{E}}_{i,j}$, $oldsymbol{\mathrm{E}}_{i,j}$, $oldsymbol{\mathrm{E}}_{i,j}$, $oldsymbol{\mathrm{E}}_{i,j}$ produce the second contract of the second con ,).