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INFERENCE OF SIGNS OF INTERACTION EFFECTS IN
SIMULTANEOUS GAMES WITH INCOMPLETE INFORMATION

BY ÁUREO DE PAULA AND XUN TANG1

This paper studies the inference of interaction effects in discrete simultaneous games
with incomplete information. We propose a test for the signs of state-dependent inter-
action effects that does not require parametric specifications of players’ payoffs, the
distributions of their private signals, or the equilibrium selection mechanism. The test
relies on the commonly invoked assumption that players’ private signals are indepen-
dent conditional on observed states. The procedure is valid in (but does not rely on) the
presence of multiple equilibria in the data-generating process (DGP). As a by-product,
we propose a formal test for multiple equilibria in the DGP. We also implement the test
using data on radio programming of commercial breaks in the United States, and in-
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clude, for example, airing commercials at radio stations (Sweeting (2009)) and
peer effects in recommendations by financial analysts (Bajari, Hong, Krainer,
and Nekipelov (2010)).

Earlier works have studied the identification and estimation of these games
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the players’ actions observed from data. We show further in Section 3 that
signs of correlations between players’ actions are determined by the signs of
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in the data. The first is based on calculating the percentage of pairs of play-
ers whose actions are correlated. The other is a test of the null of a unique
BNE against the alternative of exactly two BNE in the data using maximum
likelihood estimates. In comparison, we develop stronger and new results by
extending this intuition in a more general context. The most important distinc-
tion is that our test can be applied in cases where asymmetric equilibria may
arise due to heterogeneities in players’ payoffs, and individual-specific interac-
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private information ε is jointly distributed according to the cumulative distri-
bution function (CDF) Fε|X(·|x). The payoff for player i from choosing action
1 is U1i(X� εi) ≡ ui(X) + (

∑
j �=i Dj)δi(X) − εi, while the return from the other

action U0i(X� εi) is normalized to 0. Intuitively, ui(X) specifies a base return
from action 1 for player i. Meanwhile δi(X) captures interaction effects on i’s
payoff due to another player j who chooses 1. The return functions (ui� δi)

N
i=1

and the distribution of private information Fε|X are common knowledge among
all players. We maintain the following identifying restrictions on Fε|X through-
out.

ASSUMPTION 1: Conditional on any x ∈ ΩX , Fε|X(·|x) = ∏
i≤N Fεi |X(·|x) and

has positive density over RN .

Assumption 1 requires that the εi’s be mutually independent conditional
on X = x. It allows X to be correlated with private information of the play-
ers, as is plausible in empirical applications. This conditional independence
restriction is commonly used in the estimation literature for both static and
dynamic games with incomplete information. A pure strategy for player i in
this Bayesian game is a mapping si : ΩX�εi

→ {0� 1}. Letting Si(X� εi) denote an
equilibrium strategy for player i, the equilibrium behavior prescribes

Si(X� εi) =
⎧⎨
⎩

1� if ui(X) + δi(X)
∑
j �=i

E[Sj(X� εj)|X� εi] − εi ≥ 0,

0� otherwise.

Under Assumption 1, E[Sj(X� εj)|X = x� εi] = E[Sj(X� εj)|X = x] ≡ pj(x),
and a Bayesian Nash equilibrium (BNE) in pure strategies (given state x) can
be characterized by a profile of choice probabilities p(x) ≡ [p1(x)� � � � � pN(x)]
such that for all x ∈ ΩX ,

pi(x) = Fεi |X=x

(
ui(x) + δi(x)

∑
j �=i

pj(x)

)
for all i = 1� � � � � N�(1)

where pi(x) is player i’s probability of choosing action 1 conditional on the
state x and Fεi |X is the marginal distribution of εi conditional on X . Let Lx�θ

denote the set of BNE (as summarized by solutions in p in (1)) for a given x
and structure θ ≡ {(ui� δi)i=1�����N� Fε|X}. The existence of pure-strategy BNE for
any given x follows from Brouwer’s fixed point theorem and the continuity of
Fεi |X under Assumption 1. In general there may be multiple BNE, depending
on the specifications of Fε|X , ui, and δi.

The model specification rules out general heterogeneous interaction effects
that may vary with the identities of each pair of competing players (e.g., δij).
Nonetheless, we can extend our inference approach to allow players’ payoffs
to be affected by competitors’ decisions in general forms that are known to



148 Á. DE PAULA AND X. TANG

researchers (see discussions in Section 3 and the Supplemental Material (de
Paula and Tang (2012))). This would be the case, for example, if payoffs depend
on the proportion (instead of the sum) of agents taking an action, or on the
action of at least one other person but not on the action of additional agents
beyond that (i.e., fi(x� D−i) = maxj �=i(Dj)), or even if it changes only when all
competitors take a particular action (i.e.,
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PROOF: Under Assumption 1, Di must be independent of
∑

j �=i Dj condi-
tional on x in every single BNE pl in Lx.
Sufficiency of (i). Suppose there is a unique BNE in the data-generating pro-

cess; that is, L+
x is a singleton {pl}. Then p∗

i (x) = pl
i(x), γ∗

i (x) = ∑
j �=i p

l
j(x),

and γ̃∗
i (x) = pl

i(x)
∑

j �=i p
l
j(x) for all i in state x. Hence γ̃∗

i (x) = p∗
i (x)γ∗

i (x) for
all i.
Necessity of (i). Suppose L+

x�θ is not a singleton in state x. Then there exist at
least some i and pl� pk ∈ L+

x such that pl
i �= pk

i . Also note that for such a player
i, δi(x) must necessarily be nonzero. By definition,


i(x) ≡ γ̃∗
i (x) − p∗

i (x)γ∗
i (x)(3)

=
∫

pl∈L+
x

pl
i(x)γl

i(x) dΛx −
∫

pl∈L+
x

pl
i(x) dΛx

∫
pl∈L+

x

γl
i(x) dΛx�

Suppose δi(x) > 0. The equilibrium characterization in (1) implies that
there exists a strictly increasing function hi such that γl

i(x) = hi(p
l
i(x)) ≡

(F−1
εi |X(pl

i(x)) − ui(x))/δi(x) for each single pl in Lx�θ.7 Thus for x given, (3)
can be written as

γ̃∗
i (x) − p∗

i (x)γ∗
i (x)

=
∫ 1

0
hi(z)z dΛ̃i�x(z) −

∫ 1

0
z dΛ̃i�x(z)

∫ 1

0
hi(z) dΛ̃i�x(z)�

where z ≡ pl
i(x) and Λ̃i�x is a distribution of pl

i(x) induced by the equilibrium
selection mechanism Λx defined on Lx. Thus (3) takes the simple form of the
covariance of a random variable z and a strictly increasing function of itself:

cov(Z� hi(Z)) = E
[(

Z − E(Z)
)(

hi(Z) − E(hi(Z))
)]

= E
[
(Z − E(Z))

(
hi(Z) − hi(E(Z))

)]
+ E

[
(Z − E(Z))

(
hi(E(Z)) − E(hi(Z))

)]
= E

[
(Z − E(Z))

(
hi(Z) − hi(E(Z))

)]
�

Because hi is strictly increasing in [0� 1] for given x, we have z1 > z2 ⇒ hi(z1) >
hi(z2). Consequently, (z − E(Z))(hi(z) − hi(E(Z))) > 0 for any z �= E(Z),
and the covariance is strictly positive, provided the distribution Λ̃i�x is not
degenerate on L+

x . Hence γ̃∗
i (x) − p∗

i (x)γ∗
i (x) > 0 if multiple BNE exist in

the data-generating process in state x. The case with δi(x) < 0 is proved by

7The form of hi may depend on θ and x in general. We suppress this dependence for notational
ease.
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This issue can be solved if, for the (i� x) considered, the signs or the mag-
nitudes of the interaction effects are known to remain the same over a set of
covariate realizations (for example, because of parameter constancy or, more
generally, exclusion restrictions). In such cases, the researcher can pool infor-
mation from games with heterogeneous covariates to help identify the signs of
interaction effects for such a (i� x). We consider these two scenarios for the
rest of this subsection.

Aggregating Data From Games With the Same Sign of δi(x)

Consider a simplified case where strategic interaction effects have the same
sign for all x ∈ ΩX for some i. Then sign(δi(·)) is identified if and only if the set
of states where i uses multiple BNE strategies in the DGP has a positive mea-
sure under FX . To see this, note that δi(x) > (<) 0 if γ̃∗

i (x)−p∗
i (x)γ∗

i (x) > (<)
0. Furthermore, if δi(x) > (<) 0 and multiple equilibria are played in the DGP
under x, then⇒∗
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of states X includes a subvector X̃0 that consists of market- or sectorwide fac-
tors that affect the demand for firm products. X also includes mutually exclu-
sive subvectors (X̃i)i≤N with X̃i capturing firm-specific factors that only affect
the profits for firm i but none of its rivals. For example, X̃i may include labor
costs or local regulations that pertain to the geographic location of i. The vec-
tor of private information (εi)i≤N may well capture all other firm-specific profit
factors (such as idiosyncratic costs) that are unobservable to opponents and
econometricians. If rivals’ idiosyncratic factors (such as labor costs) have no
bearing on firm i’s profits in addition to X̃0 and X̃i, then Fεi |X = Fεi |Xi

, where
Xi = (X̃0� X̃i). For each (i� x), we refer to the set Υi(xi) ≡ {x′ : x′

i = xi} as the
equivalence class for i at x. We state the exclusion restriction assumption as
follows.

ASSUMPTION 2: For all i, there exists a strict subvector of X (denoted Xi) such
that ui(x) = ui(xi), δi(x) = δi(xi), and Fεi |X=x = Fεi |Xi=xi

for all x.

The main idea for identifying sign(δi(x)) (even when i only has a unique
BNE strategy at each realization x) is based on three observations: (a) Player
i can adopt different BNE strategies as uj(x

′)� δj(x
′)� Fεj |X=x′ vary over the

equivalence class Υi(xi). (b) By assumption, the ith equation characterizing
equilibrium in (1) is the same for all x′ in Υi(xi). (c) Opponents’ choice proba-
bilities affect i’s choice probability across different x′ in Υi(xi) only via the sign
of the strategic interaction effect for i, which is the same for all x′ in Υi(xi)
under the exclusion restriction in Assumption 2. Consequently, if in response
to her opponents’ equilibrium strategies, i
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Monte Carlo section (Section 5). We also discuss this assumption in greater de-
tail following Proposition 2. Let g index independent games observed in data,
and let Di�g denote the decision made by i in game g. Define

Ψi(xi) ≡ E

[
Di�g

(∑
j �=i

Dj�g

)∣∣∣Xg ∈ Υi(xi)

]

− E[Di�g|Xg ∈ Υi(x)]E
[∑

j �=i

Dj�g

∣∣∣Xg ∈ Υi(xi)

]
�

PROPOSITION 2: Suppose Assumptions 1 and 2 hold. Then (i) at any x,
sign(δi(x)) = sign(Ψi(xi)) for all i if Λ∗

xi
is nondegenerate in i’s dimension and

(ii) Λ∗
xi
is nondegenerate in i’s dimension if and only if Ψi(xi) �= 0.

PROOF: Consider any pair of (i� x) such that Λ∗
xi

is not degenerate. The
equations in (1) and Assumption 2 imply that there exists a function hi such
that γl

i(z) = hi(p
l
i(z)) for all z ∈ Υi(xi) and pl ∈ L+

x , where hi(·) ≡ (F−1
εi |x(·) −

ui(x))/δi(x). The function hi summarizes the interdependence between i’s
BNE strategies and those for j �= i. If Λ∗

xi
is nondegenerate in i’s dimension,

then

Ψi(xi) =
∫

p∈L∗
xi

E

[
Di

(∑
j �=i

Dj

)∣∣∣p� X ∈ Υi(xi)

]
dΛ∗

xi
(5)

−
(∫

p∈L∗
xi

E[Di|p� X ∈ Υi(xi)]dΛ∗
xi

)

·
(∫

p∈L∗
xi

E

[∑
j �=i

Dj

∣∣∣p� X ∈ Υi(xi)

]
dΛ∗

xi

)

=
∫

p∈L∗
x

pi

(∑
j �=i

pj

)
dΛ∗

xi
−

∫
p∈L∗

x

pi dΛ∗
xi

∫
p∈L∗

x

(∑
j �=i

pj

)
dΛ∗

xi
�

where p ∈ [0� 1]N
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δi(x) > 0 (or < 0) for x ∈ Υi(xi). Hence the same argument as in Proposition 1
shows that for all (i� x), Ψi(xi) > 0 (or < 0) if δi(x) > 0 (or < 0) and Λ∗

xi
is non-

degenerate in i’s dimension. It also follows immediately from (6) that if Λ∗
xi

is
degenerate in i’s dimension, then Ψi(xi) = 0. Q.E.D.

That the distribution Λ∗
xi

is nondegenerate in i’s dimension is a weak restric-
tion given Assumption 2. For this to hold, it is necessary that δi(x) �= 0 and
(uj� δj� Fεj |X) for j �= i vary over states in the equivalence class for i. The non-
degeneracy can fail in cases such as when player i does not interact with rivals
at all at x (δi(x) = 0).8 Part (ii) of Proposition 2 suggests an immediate test
for the nondegeneracy condition using observed distributions of states and ac-
tions. The example below shows how the nondegeneracy condition can hold
for all (i� x) under fairly intuitive restrictions.

EXAMPLE 2—Nondegeneracy for All i� x: Consider a 2-by-2 entry or exit
game with incomplete information between firms 1 and 2 with state vector X

which can be partitioned as (X̃0� X̃1� X̃2), where X̃0 are market-level factors
that affect profitability of the firms, and X̃1 and X̃2 are firm-level character-
istics for firms 1 and 2, respectively. Suppose δi(x) �= 0 for all i� x, and that
Assumptions 1 and 2 hold with X1 ≡ (X̃0� X̃1) and X2 ≡ (X̃0� X̃2). Assume
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if no variables are excluded for individual i and the equivalence class for i at x
is a singleton, then the nondegeneracy of Λ∗

x on i’s dimension will amount to
the existence of multiple BNE strategies at state x.

4. TESTING MULTIPLE BNE AND INFERRING INTERACTION SIGNS

When equilibrium choice probabilities are the same for all players in a game,
the average choice in this particular game is an unbiased estimator for the
choice probabilities within a particular symmetric equilibrium (e.g., Brock and
Durlauf (2007, p. 58)). However, asymmetric BNE where players have differ-
ent choice probabilities in one equilibrium may arise. This happens, for ex-
ample, even when payoffs and distributions are homogeneous but the (com-
mon) δ(·) is negative. When the game has asymmetric equilibria or there is
a small number of players, the choice probabilities are not reliably estimated
by averaging choice within a game. Nevertheless, if the same equilibrium is
played across games, the data can be pooled across those games to estimate
the choice probabilities. Hence, testing for multiple equilibria is of interest in
its own right.

Additionally, most of the known methods for semiparametric estimation of
incomplete information games (without explicitly specifying an equilibrium se-
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It follows from Section 3 that 
i(x) �= 0 if and only if i adopts multiple strate-
gies with positive probability at x. In the Supplemental Material, we propose
a simple Wald test that can be used to test the joint null in (7) at x. We also
note that the parameter 
i(x) can be easily adapted to accommodate general
(known) fi(x� D−i) as indicated previously.

A failure to reject the null of a unique equilibrium in the DGP suggests
the equilibrium conditions in (1) can be used for estimation under additional
identifying assumptions on u�δ, and Fε|x.11 If the null of a unique BNE is re-
jected, then finding out which of the N single nulls in (7) are responsible for
the rejection is helpful. We further motivate and address this question using a
multiple-testing procedure in Section 4.1 below.

Finally, note that with N = 2, multiple BNE exist at x only if signs of indi-
vidual interaction effects are the same for both players. In this case, both play-
ers adopt strategies that imply distinct conditional choice probabilities across
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corresponding to each i given x:

H0
i : 
i(x) = 0�

H1
i : 
i(x) �= 0�

Given individual test statistics for each of the i ≤ N hypotheses, our objective
is to define a decision rule that controls the familywise error (FWE), rate, or the
probability of rejecting at least one of the true null hypotheses. That is,

FWEP = PrP{reject at least one H0
i : 
i(x) = 0 where i ∈ I0(P)}�

where the subscript P indicates the DGP and I0(P) ⊂ {1� � � � � N} is the set of
indices i of true null hypotheses under P . A multiple-testing procedure asymp-
totically controls the FWEP at α if lim supG→+∞ FWEP ≤ α for any P .

We focus on a finite support ΩX and we suppress x for notational ease when
there is no ambiguity. Sample analogs of expectations conditional on x are sim-
ply calculated as the sample averages across games with X = x. Whereas this is
easily done when ΩX is discrete, a sample analog for a continuous X would in-
volve the aggregation of realizations at “nearby” observations via nonparamet-
ric techniques (e.g., kernel methods). Since covariates may induce a different
number of equilibria, in small samples the inference for a particular realization
in ΩX may be contaminated by the uniqueness or multiplicity of solutions at
neighboring realizations. Note nevertheless that the identification arguments
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where μ̂G is the vector of sample analogs for µ. By the multivariate central

limit theorem, G1/2(μ̂G({x}) − μ({x})) d−→ N (0Ñ �Σ({x})) as G → ∞, where
0Ñ is an Ñ vector of zeros and Σ is the corresponding variance–covariance
matrix. Define TG({x}) to be an N vector with its ith coordinate being

TG�i({x}) ≡
∑
j �=i

(
µ̂ij({x})
µ̂0({x}) − µ̂i({x})µ̂j({x})

(µ̂0({x}))2

)
�

By the delta method, we obtain that

G1/2
(
TG({x}) −�(x)

) d−→ N
(
0N� V({x})Σ({x})V({x})′)

as G → ∞�

where �(x) ≡ (
i(x))N
i=1. The Jacobian V({x}) is an N-by-Ñ matrix, with its ith

row Vi({x}) defined by the following table (where µ(m)({x})� Vi�(m)({x}) denote
the mth coordinates of two Ñ vectors μ({x}) and Vi({x}), respectively, and
j� k �= i):

µ(m)({x}) Vi�(m)({x})
µ0({x}):

∑
j �=i(− µij({x})

µ0({x})2 + 2µi({x})µj({x})
µ0({x})3 )

µi({x}): −∑
j �=i

µj({x})
µ0({x})2

µj({x}): − µi({x})
µ0({x})2

µij({x}) or µji({x}): 1
µ0({x})

µjk({x}): 0

We can estimate Σ({x})� V({x}) consistently by replacing µ0({x})� µI({x})
with the sample analogs described above. For the remainder of this subsection,
we omit the argument ({x}) for notational ease.

Well known methods that asymptotically control for the familywise error
rate include the Bonferroni and the Holm’s methods. Both methods can be
described in terms of the p-values for each of the individual hypotheses (in-
dexed by i) above. We denote these p-values by p̂G�i. The Bonferroni method
at level α rejects i if p̂G�i ≤ α/N . The Holm’s procedure, which is less conser-
vative than the Bonferroni method, follows a stepwise strategy. (For notational
convenience, we suppress the dependence of the hypotheses and test statistics
on x.) The Holm’s procedure starts by ordering the p-values in ascending or-
der: p̂G�(1) ≤ p̂G�(2) ≤ · · · ≤ p̂G�(N). Let H0

jk
: 
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matrix.15 We summarize the two approaches for estimating ĉk in the Supple-



162 Á. DE PAULA AND X. TANG

the delta method and Slutsky’s theorem, it is straightforward to verify that
(
V̂i(Υi(x))Σ̂(Υi(x))V̂i(Υi(x))′/G

)−1/2

× (
TG�i(Υi(x)) − Ψi(x)

) d−→ N (0� 1) as G → ∞�

where V̂i(Υi(x)) and Σ̂(Υi(x)) are estimators for Vi(Υi(x)) and Σ(Υi(x)),
which themselves are defined analogously to the discussion in Section 4.1.
Testing the existence of multiple equilibria in the data and the sign of δi(x)
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For any (λ� G), we simulate a data set of players’ binary decisions by letting

Di�g = 1
{

ui − Wg

(∑
j �=i

p1
j

)
− (1 − Wg)

(∑
j �=i

p2
j

)
− εi�g ≥ 0

}
�

where, in each game g ≤ G, Wg is simulated from a Bernoulli distribution with
success probability λ, εi�g from N (0�1� 0�252) and pl’s are propensity scores
in the two Bayesian Nash equilibria. For each (λ� G), we simulate S = 1000
data sets. For each data set, we employ the stepwise multiple-testing proce-
dure as described in Section 4.2 and make a decision to reject or not to reject
the null hypothesis that there is a unique equilibrium in the data-generating
process. We experiment with three different approaches for choosing the crit-
ical level ĉk in Section 4.2: (i) simulation using estimated covariance matrix of
TG, (ii) bootstrap, and (iii) studentized bootstrap (Algorithms 3.2 and 4.2 in
Romano and Wolf (2005)). For meaningful comparison between these three
approaches, we use the same number of simulated multivariate normal vec-
tors in (i) as the number of bootstrap samples drawn in (ii) and (iii) (which is
denoted by B). We experiment with B = 1000� 2000. In Table I, we report the
probability of rejecting at least one true null hypothesis (i.e., rejecting H0 for
i = 1) calculated from the S = 1000 simulated data sets in columns RP1, RP2,
and RP3, where RP denotes rejection probability.
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TABLE II

FINITE SAMPLE PERFORMANCE: TEST OF SIGNS OF INTERACTION EFFECTSa

G λ i = 1 i = 2 i = 3

1000 0�50 [0.036, 0.076] [0.000, 1.000] [0.000, 1.000]
0�25 [0.035, 0.072] [0.000, 1.000] [0.000, 1.000]
0�10 [0.040, 0.072] [0.000, 1.000] [0.000,1.000]

3000 0�50 [0.054, 0.067] [0.000, 1.000] [0.000, 1.000]
0�25 [0.048, 0.048] [0.000, 1.000] [0.000, 1.000]
0�10 [0.049, 0.053] [0.000, 1.000] [0.000, 1.000]

aDesign 1: S is 1000; G is the sample size; λ is the first equilibrium selection probability. The brackets include
[q+� q−]: q+ is the frequency of rejection of H0 in favor of H+ ; q− is the frequency of rejection of H0 in favor of H− .

where x1 ∈ {−1� 2}, x2 ∈ {−1/2� 3/2}, and x3 ∈ {−1� 3}. Covariate realizations
have the same probability. The state-dependent interaction effect for i is
δi(xi) = δxi, where δ is a parameter that controls the scale of the interac-
tion effect. The private information εi is uniformly distributed over (

i
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TABLE IV

FINITE SAMPLE PERFORMANCE: TEST OF SIGNS OF INTERACTION EFFECTSa

G = 5000 G = 10,000

δ = 0�8 δ = 0�9 δ = 1�0 δ = 0�8 δ = 0�9 δ = 1�0

X1 = −1 [0�000� 0�469] [0�001� 0�628] [0�000� 0�854] [0�000� 0�717] [0�000� 0�890] [0�000� 0�986]
X2 = −1/2 [0�003� 0�359] [0�000� 0�520] [0�000� 0�714] [0�000� 0�577] [0�000� 0�790] [0�000� 0�925]
X3 = −1 [0�000� 0�483] [0�000� 0�643] [0�000� 0�834] [0�000� 0�702] [0�000� 0�888] [0�000� 0�986]
X1 = 2 [0�323� 0�004] [0�459� 0�000] [0�667� 0�000] [0�484� 0�000] [0�736� 0�000] [0�910� 0�000]
X2 = 3/2 [0�400� 0�000] [0�617� 0�000] [0�817� 0�000] [0�665� 0�000] [0�867� 0�000] [0�979� 0�000]
X3 = 3 [0�300� 0�004] [0�496� 0�000] [0�735� 0�000] [0�545� 0�000] [0�764� 0�000] [0�930� 0�000]

aNumber of simulations S = 1000. The brackets include [q+� q−]: q+ is the frequency of rejection of H0 in favor
of H+ ; q− is the frequency of rejection of H0 in favor of H− .

bution that puts probability 1 on the unique equilibrium for each covari-
ate realization x. Accordingly, Λ∗

xi
(p) = 1/4 if p ∈ {(0�3233� 0�5603� 0�3233),

(0�2523� 0�5288� 0�7098), (0�2998� 0�7013� 0�2998), (0�2101� 0�7262� 0�7231)},
and is zero otherwise. The important implication is that for each one of these
realizations, player 1 adopts a different equilibrium strategy, which implies a
different conditional choice probability of choosing 1. As we vary the covari-
ates for the other players while fixing x1

of 1
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same time, listeners may be dissuaded from switching stations to avoid breaks,
and the audience for a particular station is not affected by the decision to
broadcast a commercial. On the other hand, if listeners have an outside option
(i.e., public radio, a CD, TV), synchronization by all stations risks ultimately
driving listeners away, reducing the audience for all radio stations. Alternating
commercial breaks would in this case be preferable (see Sweeting (2006) for a
simple model). Whereas advertisers would like stations to coordinate to pre-
clude consumers from avoiding the ads, radio stations may have an incentive
to alternate, as ratings are computed on average listenership, not audiences of
commercials. Lack of coordination by the radio stations would suggest that the
market does not align incentives of advertisers and radio stations.

Sweeting (2009) examined this question by estimating a parametric model.
His baseline specifications assumed (i) that stations care symmetrically about
their interactions with all other stations in the market and (ii) that symmet-
ric equilibria are played. Based on these assumptions, he found that stations
prefer to choose the same time for commercials during drive-time hours, with
stronger preferences in smaller markets. Our methodology allows us to test
whether Sweeting’s conclusions are robust to relaxing these possibly restrictive
assumptions in a nonparametric setting.

Because programmers have to allocate advertisements in real time (i.e., on
the spot) around the usual schedule of songs and news updates without inter-
rupting those pieces of programming, there is uncertainty as to when commer-
cial breaks can be aired. The exact sequence of songs and news updates is not
publicly distributed beforehand and, as Sweeting (2009, footnote 7) pointed
out, disc jockeys are given ample discretion over schedules. Therefore, we fol-
low Sweeting and assume that the unobserved component of the advertisement
timing decision is private information to each radio station.

Warren (2001, p. 24) mentioned that airing commercials at a specific time
“can be done some of the time. But it can’t be done consistently by very many
stations. Few songs are 2:30 minutes long any more” (see also Gross (1988)).
Hence there is also little reason to believe that this scheduling uncertainty is
correlated given public information. This (private) payoff uncertainty to airing
a commercial at a specific time is captured in our model by εi.

Given that commercial break choices are made within the one hour pro-
gramming horizon in real time, whether to advertise close to the end of that
horizon will not be affected by continuation value considerations. Further-
more, the number of commercials already aired earlier may induce asymme-
tries in the payoff to broadcast a commercial at the last minutes of the hour,
which are captured by our specification. Data show that most commercials are
aired close to the end of the programming horizon (i.e., the hour), so our focus
on the end of the hour can also be justified as the relevant empirical focus.
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TABLE VI

MULTIPLICITY TESTS (X = HOUR OF DAY)a

:55 min vs. not :55 min G

All hours Wald test 33�32∗ 26,152
RW T †

1 > T †
3 > T †

2 > 0

Noon–1 pm Wald test 3�86 6534
RW T3 > T
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TABLE VII

:55 MIN VS. NOT :55 MIN (X = HOUR OF DAY, MARKET SIZE)a

Market Size
(tercile)

Hour of Day

Noon–1 pm 4–5 pm 5–6 pm 9–10 pm

1 Wald test 0�77 4�94 3�22 2�27
RW T3 > T2 > 0 > T1 T2 > T1 > T3 > 0 T2 > T1 > T3 > 0 T1 > T3 > T2 > 0
G 2201 2201 2200 2199

2 Wald test 0�73 3�87 1�97 2�48
RW T2 > T3 > 0 > T1 T3 > 0 > T1 > T2 T2 > T1 > T3 > 0 T2 > T1 > T3 > 0
G 2157 2220 2159 2153

3 Wald test 4�96 19�06∗ 26�07∗ 2�92
RW T2 > T3 > T1 > 0 T †

3 > T †
2 > T †

1 > 0 T †
1 > T †

3 > T †
2 > 0 T1 > T3 > 0 > T2

G 2176 2141 2177 2168

aThe asterix (∗) denotes that Wald test statistic is significant at 5%. The dagger (†) denotes the significant hypoth-
esis at 5% FWE rate using Romano and Wolf (2005) (RW). Tk is the individual test statistic for player (hypothesis) k.
The number of bootstrap repetitions is 1000.

for all players is salient in the smallest markets during the 4–5 pm and 5–6 pm
hours of the day but not for the other conditional specifications.

7. CONCLUSION

In this paper we have shown how a condition typically employed in the anal-
ysis of simultaneous games of incomplete information leads to a simple and
easily implementable test for the signs of interaction effects and the existence
of multiple equilibria in the data-generating process. Inference of the signs of
state-dependent and individual-specific interaction effects can be done under
minimal assumptions that require only the conditional independence of pri-
vate information and the existence of state variables that satisfy appropriate
exclusion restrictions. In addition, given that many of the suggested methods
for estimating and making inferences in such environments rely on the assump-
tion that only one equilibrium is played in the data, this finding is relevant for
the implementation of these techniques. Even when the conditional indepen-
dence of private signals is not in place, it is possible to identify the signs and
infer multiplicity if the researcher observes groups of games where players are
known to follow the same equilibrium strategies (see the working paper ver-
sion).

With discrete covariates, such inference is implementable using well known
results in multiple testing. When a continuous covariate is included, the testing
procedure should account for the boundaries between regions with a different
number of equilibria. We leave this for future research. Another interesting
direction for future research is the inference of interaction effects if strategic
dependence exists between games observed in data.
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Finally, the conditional independence assumption is also found in dynamic
games of incomplete information. In those settings, optimal decision rules in-
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