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Abstract

The Poincaré Recurrence theorem states that any probability measure
preserving map has almost everywhere recurrence. However, it gives no in-
formation on how quickly this recurrence occurs. In the last twenty years,
significant advances have been made in tools for estimating the Poincaré
recurrence times in measure preserving dynamical systems. These meth-
ods connect the long term behavior of recurrence times to the Hausdor ]



2 Notation

We will use a combination of the notations used by Barreira and Boshernitzan
that are summarized below.

Definition 1 mg is defined to be the Hausdor [=d measure on a metric space
(X, d).

Definition 2 A measure preserving system(m.p.s.) is a probability space (X, N, W)
together with a measure preserving map T : X - X.

Definition 3 A metric measure preserving system (m.m.p.s.) is an m.p.s. with
a metric d such tath the open sets relative to d are in N.

Definition 4 The self return time of a point x to the ball B(x, r) is
Tr(X) = inf{n CN|d(T"x,X) <r}.
Definition 5 The return time of a point y CBI(X, r) to the ball B(x,r) is
T (y,x) = inf{n CN|d(T"y,x) <r}.

Definition 6 The lower and upper recurrence rates of x are respectively
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RI(x) = liminf,_,q Lot

RY(X) = limsup,_,

Definition 7 The lower and upper pointwise dimensions of (1 at a point x [X
are respectively

log p(B(x,r))
logr

log p(B(x,r))

dL(X) = liminf,_o dﬂ(X) = limsup,_,o logr

Definition 8 The Hausdor Cdimension of a probability measure p on X is
dimy p = inf{dimy Z|u(Z2) = 1},
where dimy Z is the Hausdor Cdimension of Z [CXI.

Definition 9 We say that the measure 1 has long return time with respect to
T if, for p-almost every x [CX and for (3> 0 small enough,

im i log P(A . 1))
iminfe—o ogu@een =1

where
AcF {x [BI(X, NIt (y, x) < u(B(x,r) 3.

Definition 10 We say that the measure u is weakly diametrically regular (w.d.r)
on a set Z [CXl1if [J> 1 such that for p-almost every x [Z and every [ 0,
[3F 0 such that if r <6 then

H(B(x,nr)) < u(B X, rr-- (€]



We will now prove the following small consequence of 10.

Lemma 1 If pis w.d.r. on Z X, then Q1> 1 > 0 for p almost every
X [Z1 and every [3 0 such that [Tk d equation (1) holds.

Proof:

Since W is w.d.r, [ > 1 such that for p-almost everywhere x [Z and every
(30, 3 0such that r <3 [(1).

Claim:

(B (X, n%r)) < u(B(x, r)rkHor r < nf—_l

We proceed by induction. The base case k = 1 is clear. Assume that the
inductive hypothesis is true for k — 3B(Xh[(.444(b)1n,e)-333w3(h)28(yp)-2ae the



and, if mg(Y) =0, then

lim inf{n=d(f (), F(T™))} = 0. ©)

In other words, mini<n<n{d(F(X), F(T"X))} = (ﬁ)é for some constant ¢ = 0
and N large enough. We can easily adjust this theorem to answer a question
about how quickly the map T recurs by taking f to be the identity. By doing
so, we arrive at the following theorem of Boshernitzan.

Theorem 3 Let (X,N,, T,d) be an m.m.p.s, If, for some a > 0, my is O-
finite on Y. Then for p-almost every x X

liminf{nad(x, T"X)} < oo )
n—oo
and, if mg(Y) =0, then
liminf{nad(x, T"x)} = 0. (5)
n—oo
We can see from these theorems that, to within a constant multiple, we can

obtain an upper bound on the global long term behavior of the recurrence of
any any



at the Hausdor C_dimension of the space Y .

These statements are remarkable since, apriori, one would expect that the spe-
cific nature of a map would play a large role in its recurrence times and, even if
the nature of the map did not aledt this upper bound significantly, one would
expect that, since the space of measurable functions has widely varying be-
havior, di[erent measurable functions ¥ would have widely varying recurrence
behavior. However, we can now see that no matter how di Lerknt their behavior,
two p-preserving maps T, T’ with measurable functions f, f’ respectively must
have the same upper bound on their behavior. Because of this, we might suspect
that these upper bounds are very far from optimal, however, [4] is able to find
examples where these bounds are in fact optimal. We will see in the work of
Barreira in [1] that in some more restricted domains and families of maps we
are able to obtain both upper and lower bounds on the recurrence behavior of
the map T given only information about the measure structure on X.

4 Local Recurrence

In this section, we restrict our attention to Borel measurable transformations T
on separable metric spaces X and, in many cases, X [RY. This appears to be a
large restriction, however, by the Whitney embedding theorem if X [CM with
M a finite dimensional smooth manifold then X can be smoothly embedded
into RY for some d > 0 and there we can apply the theorems in this section.

We will now discuss theorems that relate the upper and lower recurrence times
to the pointwise dimension of the manifold X. Note that in this section, we
will not discuss recurrence of measurable functions of an m.p.s., but will assume
that X is an m.m.p.s. and discuss the recurrence of the map T.

In [1] Barreira is able to obtain local upper bounds on the lower and upper
recurrence rates without additional assumptions on T or the space X. He does
this in terms of the lower and upper pointwise dimensions of the space X.

Theorem 4 Let (X,N,,T,d) be an m.m.p.s. with T Borel measurable and p
w.r.d., then for p- almost every x [CX

| |
R'=d, and R" =d. (6)

The theorem can be better understood in the following form. For r small enough
we obtain T(X,X) = r—9. This is obtained by applying the bound on R'(x).
Thus, we have obtained a lower bound on the recurrence time of the map T.
Notice that this first theorem gives us a lower bound on the first recurrence to
B(x,r), while the information from the global recurrence theorem 3 together
with lemma 2 gives us an upper bound on this quantity when it is rewritten in
the form 1,(x, X) < Cxr~9M= X for r small enough.



By examinging x [X locally and looking only at the map T instead of measur-
able functions f : X - Y, Barreira[l] improves the upper bound obtained from
global considerations in the following theorem.

Theorem 5 If (X,N,,T,d) is an m.m.p.s. with T a Borel measurable trans-
formation and p w.d.r. then (5) holds with f the identity [Cd > dL(x).

This statement is in fact stronger than that in theorem 3 since, using Young’s
criteria from [9], one can show dimy X = d'u(x) for pn almost every x [X.
Thus, if we have information about p locally, we will in general gain a better
upper bound on the recurrence time for T by examining the local dimension of p.

The final result that we will discuss tightens both the upper and lower bound
using local information about the T invariant measure p given additional infor-
mation about the relationship between the measure p and the map T.

Theorem 6 [1] Let (X, N, 4, T,d) be an m.m.p.s. with T Borel measurable and
pw.d.r. If g has long return time with respect to T, and dL(x) > 0 for p almost
every x [X, then for p almost every x X

R'(x) = d},(x) and RY(x) = d}j(x). @
Thus, if p has a long return time with respect to T, we can improve from the
bounds
r=9h < (X, X) < Cyr— dimn X
to the bounds
—d dix

r Lsrr(x,x)sr* m

From a further theorem in [1] we see that the class of systems with long return
time includes all those equilibrium measures supported on locally maximal hy-
perbolic sets.

Since these results seem to be very strong, one may be led to believe that
measures that are w.d.r. are not very common, however, the following lemma
shows that each one of these theorems applies to Borel measurable subsets of
RY for any finite d.

Lemma 3 [1] Any Borel probability measure on RY is w.d.r.

Proof:
Let p be a Borel probability measure on RY.
Claim: It is su [cieht to show that for p almost every x [RF

H(B(x,2”M) = n*u(B(x,27 " 1) ®)
for su [ciehtly large n [N

Fix 3 0. Let 2="2r <21 Then we have



H(B(X, 2r)) < u(B(X,2~™) < n2u(b(x, 2~ "1))

for n > N large enough i.e. r <2-N-1, But X [CRY, we have

(B(x,2r)) (x,27"7?) - _
BT 2 Bzt = (M~ 7 =02

Thus, we obtain p(B(x,2r)) < n*u(B(x,r)). Thus, we need only find n > 0

such that n* < r—% But, we have r— = 2D Thys, clearly [N such that

for n = N, [CZ0*DE5 n4 Therefore, 1= N, [Irlk 2-N2—1 we have (1)

and the claim is proven.



Then p(v () < 1.

We will show that TV (t) I;I—J'V () fori 8 j,0<i<tand therefore,
since T is Y preserving, each has the same measpr_&l!j(ll’ ) < @ = %
Let0<j <i<st Suppose ACT'V(t) TIV(t). Then, we have
Tix CMI(t) [M1and TIx CMI(t) V1 Therefore, if y = Tix, y [V but
Ti-ly [CVI(t) [CV1and j —i <t therefore, y = Tix I VI(t), a contradic-
tion. Thus, we have proven the first claim.

Claim 2: Let mg(Y) < ¢ < oo. Then I3 0 and p = 1 [A measurable set
F = F(p, 0 CXI, with p(F) > 1 — %, such that CX [CH [an integer k
such that

C1,

d(f(x), F(Tkx)) < min( %2 “ o

By the definitiqnjf the Hausdor [_d measure, we can find a countable

fY = ;5,Ui, with U; having diam(U;) = r; < min(1, Ddand

i>1 MY < c. Without loss of generality, we may assume U; are Borel

and disjoint up to sets of measure 0. We may assume the sets are Borel

since for every set U [Ylwith mg(U) < oo [ W [Ylsuch that W

is Borel an@a(U) = mq(W). We then make the sets disjoint by taking
Ui =U \ 1<j<i Ui, which will still be Borel.

Now, denote V; = f~1(U;),vi = u(Vi). We examine the set

J = {ir



iza M



Now, clearly if T¥x F_H(p) then, [MI> K T"x I H(p). Therefore,
01> infycpE{Kx} > 0, we have A LTI "(X \F(p)) [HA) < %
since T is measure preserving. Therefore, since u(F’(p)) = W(F(p) \ A) =
HU(F(p)) — W(A) =1 — % as desired.

Claim 4: Com@pn of the proof for mg(Y) < co.
LetF’' = p>max(L, )" Then by claim 4, u(F") = 1 and [xI [F], (4) holds.

Now, if mg(Y) = 0, then we show that 3 holds. Let m



Now,

1 E\E' =

1

x CH| lim infi 1 {k# d(F(x), F(SK(x)))} < oo and liminfs1{n&d(F(x), F(T"(x)))} = co .

But Sk = Tk therefore, if
lim infi> 1 {ka d(f(x), F(SK(X)))} < o0
then
liminfis1{n(x)akad(F(x), F(TK(X))} < o0
and therefore,
liminf, = 1{na d(f(x), F(T"(x)))} < eo.

Thus, W(E\E’) =0 [CH(E) =0, a contradiction. Thus, the reduction is
complete.

5.2 Local Theorems

We will follow [1] to prove these theorems. We will need the following lemmas
to prove the theorems on local recurrence behavior.

Lemma 4 Let p be a finite Borel measure on the separable metric space X, and
G [Suppp a measurable set. Given r > 0, [d countable set E [Glsuch that

]
1. B(x,r) B(y,r) = [ibr any two distinct pointx X,y [H

2. W(G\ B(x,2r)) =0

XeE

Proof:

Order the the collection of subsets of G satisfying the first property by inclusion.
Clearly this collection is nonempty since any single point set in G is in it. Then
by Zorn’s lemma since G is an upper bound for the collection, [Ca maximal set
E Gl Now, since u(B(x,r)) > 0 for each x [CH [suppy, the set E is at most
countable.

Lemma 5 Let (X,N,u,T,d) be an m.m.p.s. with T Borel measurable. Then
if i is w.d.r. on a measurable set Z [Xlwith u(Z) >0, (6) holds for p-almost
every x [CZ.

11






Lemma 6 Given x X, we have R'(x) <d - for every [0,

liminf na+td(T"x, x) = 0 (11)

n—oo

Proof:
Assume that R'(x) < d. Then given > 0 [{(#,) such that r, — 0, and

T, (X) < rm @ or all n. Let Mn = Tr,(X). If My is bounded, then x is periodic
and clearly (11) holds. Now, if my, is unbounded, we have d(T™x, X) < r,, and
_1
my?td(TMrx, X) < rrh(x)ﬁqtrn
_ d+id O
< ™y =it

Therefore

_1
liminfa_ o ndfzfd(T”x, X) < liminf_. ma"d(TMnrx, x) = 0.

Thus, (11) holds for every [ 0.
Now, assume (11) holds for all 3> 0. Let rp = 2d(T"x,x). We have that
Tr,(X) = n, and thus

. . _1_
liminfn_ o Tr. (X)tF, = 0.
n

. . iy . 1
Thus, Caldivergings sequnce of positive integers kp, such that T, (X) &1, <1
for every n. Therefore,
log rE:'—'

log Trp, (X)
—log rgp,

—logrn

R'(X) < liminfn_ oo < liminfa_ o =d+[J

Since [Was arbitrary, we have our result.
Now, to prove theorem 4 we simply apply lemma 5.

To prove theorem 5 we apply theorem 4 and lemma 6.

We will have to prove something more to prove the strongest result, theorem 6.
Proof:

By theorem 4 we have R'(x) < d'u(x)_and RY(x) < d}i(x) for p-almost every
X [X. We need to obtain the reverse inequalities.

Since W is w.r.d. and p has long return time with respect to T and dL(x) >0
for p-almost every x X, if (3> 0 is small enough, we have that [aly,p > 0
and G Xlwith p(G) > 1 — [Buch that if x A and r (0, p)

H(A X, 2r)) < (B (x, 2r))™*Y, (12)
H(B(x.21) = KB, D)=, (13)
HBEx,n)=r? (14)

where A, 2r) is as in definiton 9. Now, consider

13



Adr) = {y LGt (y) = W(B(y,3r)) '}

Then, if d(x,y) < r(a), we have t(y,y) = Tor (¥, X)(b). Then, since B(x,2r) [1
B(y, 3r), if x (3 then we obtain

L1
HBX, 1) Adr) <p{y CB(X Nltr(y,x) < B (x,3n) 3 (@), 0)

< u(Ax, 2r)) H(B(x,3r)) = p(B(x, 2r))
< u(B(x, 2r))1+y (12)
< u(B(x, H)Hr-2¥@ryy (13)(14)

Then, if E [Glis a maximal ;-separated set given by lemma (4), we have

L1
H(ALN) xegH(B(x, 1) Air))

XGRH(B(X, INraz@En .
28Vraz

AN IA

Here, the last step follows from (14). Then, the Borel-Cantelli lemma gives us
that for p—almost every x 3 we have

Te n(x) > p(B(x,3e" ")+

5 9.9626 Tf 16.519 0 11.342 Td [u239.37 -11.956 Td [(9dD]TI/F24
foralln BO T'(SQTd [(026)]TJ/F15 9.962



6.2 Baker’s Map

Let T : [0,1]> — [0,1]° be the standard bakers map. We then have that T
is Lebesgue measure preserving. And thus, by theorem 3 we have that for
Lebesgue almost every x []0,1]%, we have

Tr(X, X) < Cyr—2

for r small enough. Further, by theorem 4, since d;(x) = dI'J(x) = 2 for p the

Lebesgue measure, Tr(X, X) = r—2. So, we have bounded the recurrence time for
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