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Abstract
The Poincaré Recurrence theorem states that any probability measure

preserving map has almost everywhere recurrence. However, it gives no in-
formation on how quickly this recurrence occurs. In the last twenty years,
significant advances have been made in tools for estimating the Poincaré



2 Notation
We will use a combination of the notations used by Barreira and Boshernitzan
that are summarized below.

Definition 1 mα is defined to be the Hausdorff-α measure on a metric space
(X, d).

Definition 2 A measure preserving system(m.p.s.) is a probability space (X,N , µ)
together with a measure preserving map T : X → X.

Definition 3 A metric measure preserving system (m.m.p.s.) is an m.p.s. with
a metric d such tath the open sets relative to d are in N .

Definition 4 The self return time of a point x to the ball B(x, r) is

τr(x) = inf{n ∈ N|d(Tnx, x) < r}.

Definition 5 The return time of a point y ∈ B(x, r) to the ball B(x, r) is

τr(y, x) = inf{n ∈ N|d(Tny, x) < r}.

Definition 6 The lower and upper recurrence rates of x are respectively

Rl(x) = lim infr→0
log τr
− log r Ru(x) = lim supr→0

log τr
− log r

Definition 7 The lower and upper pointwise dimensions of µ at a point x ∈ X
are respectively

dlµ(x) = lim infr→0
logµ(B(x,r))

log r duµ(x) = lim supr→0
logµ(B(x,r))

log r

Definition 8 The Hausdorff dimension of a probability measure µ on X is

dimH µ = inf{dimH Z|µ(Z) = 1},

where dimH Z is the Hausdorff dimension of Z ⊂ X.

Definition 9 We say that the measure µ has long return time with respect to
T if, for µ-almost every x ∈ X and for ε > 0 small enough,

lim infr→0
logµ(Aε(x,r))
logµ(B(x,r)) > 1

where

Aε = {x ∈ B(x, r)|τr(y, x) ≤ µ(B(x, r))−1+ε}.

Definition 10 We say that the measure µ is weakly diametrically regular (w.d.r)
on a set Z ⊂ X if ∃ η > 1 such that for µ-almost every x ∈ Z and every ε > 0,
∃δ > 0 such that if r < δ then

µ(B(x, ηr)) ≤ µ(B(x, r))r−ε. (1)
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We will now prove the following small consequence of 10.

Lemma 1 If µ is w.d.r. on Z ⊂ X, then ∀η > 1 ∃ δ > 0 for µ almost every
x ∈ Z and every ε > 0 such that ∀r < δ equation (1) holds.

Proof:
Since µ is w.d.r, ∃ η > 1 such that for µ-almost everywhere x ∈ Z and every
ε > 0, ∃δ > 0 such that r < δ ⇒ (1).

Claim:

µ(B(x, ηkr)) ≤ µ(B(x, r))r−kε for r < δ
ηk−1 .

We proceed by induction. The base case k = 1 is clear. Assume that the
inductive hypothesis is true for k − 3l0 Td [(�.444(b)1n,e)-333w3(h)28(yp)-2ae theB(x, η



and, if mα(Y ) = 0, then

lim inf
n→∞

{n 1
α d(f(x), f(Tnx))} = 0. (3)

In other words, min1≤n≤N{d(f(x), f(Tnx))} ≈ ( cN ) 1
α for some constant c ≥ 0

and N large enough. We can easily adjust this theorem to answer a question
about how quickly the map T recurs by taking f to be the identity. By doing
so, we arrive at the following theorem of Boshernitzan.

Theorem 3 Let (X,N , µ, T, d) be an m.m.p.s, If, for some α > 0, mα is σ-
finite on Y . Then for µ-almost every x ∈ X

lim inf
n→∞

{n 1
α d(x, Tnx)} <∞ (4)

and, if mα(Y ) = 0, then

lim inf
n→∞

{n 1
α d(x, Tnx)} = 0. (5)

We can see from these theorems that, to within a constant multiple, we can



at the Hausdorff dimension of the space Y .

These statements are remarkable since, apriori, one would expect that the spe-
cific nature of a map would play a large role in its recurrence times and, even if
the nature of the map did not affect this upper bound significantly, one would
expect that, since the space of measurable functions has widely varying be-
havior, different measurable functions f would have widely varying recurrence
behavior. However, we can now see that no matter how different their behavior,
two µ-preserving maps T, T ′ with measurable functions f, f ′ respectively must
have the same upper bound on their behavior. Because of this, we might suspect
that these upper bounds are very far from optimal, however, [4] is able to find
examples where these bounds are in fact optimal. We will see in the work of
Barreira in [1] that in some more restricted domains and families of maps we
are able to obtain both upper and lower bounds on the recurrence behavior of
the map T given only information about the measure structure on X.

4 Local Recurrence
In this section, we restrict our attention to Borel measurable transformations T
on separable metric spaces X and, in many cases, X ⊂ Rd. This appears to be a
large restriction, however, by the Whitney embedding theorem if X ⊂ M with
M a finite dimensional smooth manifold then X can be smoothly embedded
into Rd for some d > 0 and there we can apply the theorems in this section.

We will now discuss theorems that relate the upper and lower recurrence times
to the pointwise dimension of the manifold X. Note that in this section, we
will not discuss recurrence of measurable functions of an m.p.s., but will assume
that X is an m.m.p.s. and discuss the recurrence of the map T .

In [1] Barreira is able to obtain local upper bounds on the lower and upper
recurrence rates without additional assumptions on T or the space X. He does
this in terms of the lower and upper pointwise dimensions of the space X.

Theorem 4 Let (X,N , µ, T, d) be an m.m.p.s. with T Borel measurable and µ
w.r.d., then for µ- almost every x ∈ X

Rl ≤ dlµ and Ru ≤ duµ. (6)

The theorem can be better understood in the following form. For r small enough
we obtain τr(x, x) ≥ r−d

l
µ . This is obtained by applying the bound on Rl(x).

Thus, we have obtained a lower bound on the recurrence time of the map T .
Notice that this first theorem gives us a lower bound on the first recurrence to
B(x, r), while the information from the global recurrence theorem 3 together
with lemma 2 gives us an upper bound on this quantity when it is rewritten in
the form τr(x, x) ≤ Cxr− dimH X for r small enough.
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By examinging x ∈ X locally and looking only at the map T instead of measur-
able functions f : X → Y , Barreira[1] improves the upper bound obtained from
global considerations in the following theorem.

Theorem 5 If (X,N , µ, T, d) is an m.m.p.s. with T a Borel measurable trans-
formation and µ w.d.r. then (5) holds with f the identity ∀ α > dlµ(x).

This statement is in fact stronger than that in theorem 3 since, using Young’s
criteria from [9], one can show dimH X ≥ dlµ(x) for µ almost every x ∈ X.
Thus, if we have information about µ locally, we will in general gain a better
upper bound on the recurrence time for T by examining the local dimension of µ.

The final result that we will discuss tightens both the upper and lower bound
using local information about the T invariant measure µ given additional infor-
mation about the relationship between the measure µ and the map T .

Theorem 6 [1] Let (X,N , µ, T, d) be an m.m.p.s. with T Borel measurable and
µ w.d.r. If µ has long return time with respect to T , and dlµ(x) > 0 for µ almost
every x ∈ X, then for µ almost every x ∈ X

Rl(x) = dlµ(x) and Ru(x) = duµ(x). (7)

Thus, if µ has a long return time with respect to T , we can improve from the
bounds

r−d
l
µ ≤ τr(x, x) ≤ Cxr− dimH X

to the bounds

r−d
l
µ ≤ τr(x, x) ≤ r−duµX .

From a further theorem in [1] we see that the class of systems with long return
time includes all those equilibrium measures supported on locally maximal hy-
perbolic sets.

Since these results seem to be very strong, one may be led to believe that
measures that are w.d.r. are not very common, however, the following lemma
shows that each one of these theorems applies to Borel measurable subsets of
Rd for any finite d.

Lemma 3 [1] Any Borel probability measure on Rd is w.d.r.

Proof:
Let µ be a Borel probability measure on Rd.
Claim: It is sufficient to show that for µ almost every x ∈ Rd

µ(B(x, 2−n)) ≤ n2µ(B(x, 2−n−1)) (8)

for sufficiently large n ∈ N.

Fix ε > 0. Let 2−n−2r ≤ 2−n−1. Then we have
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µ(B(x, 2r)) ≤ µ(B(x, 2−n)) ≤ n2µ(b(x, 2−n−1))

for n > N large enough i.e. r < 2−N−1. But X ⊂ Rd, we have
µ(B(x,2r))

µ(B(x,2−n−1)) ≥
µ(x,2−n−2)

µ(B(x,2−n−1)) ≥ (n− 1)−2 ≥ n−2.

Thus, we obtain µ(B(x, 2r)) ≤ n4µ(B(x, r)). Thus, we need only find n > 0
such that n4 ≤ r−ε. But, we have r−ε ≥ 2(n+1)ε. Thus, clearly ∃N2 such that
for n ≥ N2 ⇒ 2(n+1)ε > n4. Therefore, ∀



Then µ(V (t)) < 1
t .

We will show that T−iV (t)
⋂
T−jV (t) for i 6= j, 0 ≤ i ≤ t and therefore,

since T is µ preserving, each has the same measure⇒ µ(V (t)) < µ(X)
t = 1

t .
Let 0 ≤ j < i ≤ t. Suppose ∃x ∈ T−iV (t)

⋂
T−jV (t). Then, we have

T ix ∈ V (t) ⊂ V and T jx ∈ V (t) ⊂ V . Therefore, if y = T ix, y ∈ V but
T j−iy ∈ V (t) ⊂ V and j − i < t therefore, y = T ix /∈ V (t), a contradic-
tion. Thus, we have proven the first claim.

Claim 2: Let mα(Y ) < c < ∞. Then ∀ ε > 0 and p ≥ 1 ∃ a measurable set
F = F (p, ε) ⊂ X, with µ(F ) > 1 − 1

p , such that ∀ x ∈ F ∃ an integer k
such that

d(f(x), f(T kx)) < min(
(

4cp2

k

) 1
α

, ε)

By the definition of the Hausdorff α measure, we can find a countable
cover of Y =

⋃
i≥1 Ui, with Ui having diam(Ui) = ri < min(1, ε) and∑

i≥1 r
α
i < c. Without loss of generality, we may assume Ui are Borel

and disjoint up to sets of measure 0. We may assume the sets are Borel
since for every set U ⊂ Y with mα(U) < ∞ ∃U ⊂ W ⊂ Y such that W
is Borel and mα(U) = mα(W ). We then make the sets disjoint by taking
Ũi = Ui \

⋃
1≤j<i Ui, which will still be Borel.

Now, denote Vi = f−1(Ui), vi = µ(Vi). We examine the set

J = {iλ



∑
i/∈J µ



Now, clearly if TKx /∈ F (p) then, ∀n > K Tnx /∈ F (p). Therefore,
∀n > infx∈F (p){Kx} > 0, we have A ⊂ T−n(X \ F (p)) ⇒ µ(A) ≤ 1

p

since T is measure preserving. Therefore, since µ(F ′(p)) = µ(F (p) \A) ≥
µ(F (p))− µ(A) ≥ 1− 2

p as desired.

Claim 4: Completion of the proof for mα(Y ) <∞.
Let F ′ =

⋃
p≥max(1, 1

4c ). Then by claim 4, µ(F ′) = 1 and ∀ x ∈ F , (4) holds.

Now, if mα



Now,

E \ E′ ={
x ∈ K| lim infk≥1{k

1
α d(f(x), f(Sk(x)))} <∞ and lim infn≥1{n

1
α d(f(x), f(Tn(x)))} =∞

}
.

But Sk = Tnk therefore, if

lim infk≥1{k
1
α d(f(x), f(Sk(x)))} <∞

then

lim infk≥1{n(x) 1
α k

1
α d(f(x), f(Tnk(x)))} <∞

and therefore,

lim infn ≥ 1{n 1
α d(f(x), f(Tn(x)))} <∞.

Thus, µ(E \E′) = 0 ⇒ µ(E) = 0, a contradiction. Thus, the reduction is
complete.

�

5.2 Local Theorems
We will follow [1] to prove these theorems. We will need the following lemmas
to prove the theorems on local recurrence behavior.

Lemma 4 Let µ be a finite Borel measure on the separable metric space X, and
G ⊂suppµ a measurable set. Given r > 0, ∃ a countable set E ⊂ G such that

1. B(x, r)
⋂
B(y, r) = ∅ for any two distinct pointx x, y ∈ E

2. µ(G \
⋃
x∈E B(x, 2r)) = 0

Proof:
Order the the collection of subsets of G satisfying the first property by inclusion.
Clearly this collection is nonempty since any single point set in G is in it. Then
by Zorn’s lemma since G is an upper bound for the collection, ∃ a maximal set
E ⊂ G. Now, since µ(B(x, r)) > 0 for each x ∈ E ⊂suppµ, the set E is at most
countable. �

Lemma 5 Let (X,N , µ, T, d) be an m.m.p.s. with T Borel measurable. Then
if µ is w.d.r. on a measurable set Z ⊂ X with µ(Z) > 0, (6) holds for µ-almost
every x ∈ Z.
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Lemma 6 Given x ∈ X, we have Rl(x) ≤ d ⇔ for every ε > 0,

lim inf
n→∞

n
1
d+ε d(Tnx, x) = 0 (11)

Proof:
Assume that Rl(x) ≤ d. Then given ε > 0 ∃(rn) such that rn → 0, and
τrn(x) < r

−(d+ε)
n for all n. Let mn = τrn(x). If mn is bounded, then x is periodic

and clearly (11) holds. Now, if mn is unbounded, we have d(Tmnx, x) < rn and

m
1

d+2ε
n d(Tmnx, x) < τrn(x) 1

1+2ε rn

< r
− d+ε
d+2ε

n rn = r
ε
d+ε
n .

Therefore

lim infn→∞ n
1

d+2ε d(Tnx, x) ≤ lim infn→∞m
1

d+2ε
n d(Tmnx, x) = 0.

Thus, (11) holds for every ε > 0.
Now, assume (11) holds for all ε > 0. Let rn = 2d(Tnx, x). We have that
τrn(X) ≤ n, and thus

lim infn→∞ τrn(x) 1
d+ε rn = 0.

Thus, ∃ a divergings sequnce of positive integers kn such that τrkn (x) 1
d+ε rkn < 1

for every n. Therefore,

Rl(x) ≤ lim infn→∞ log τrn (x)
− log rn ≤ lim infn→∞

log rd+ε
kn

− log rkn
= d+ ε.

Since ε was arbitrary, we have our result. �
Now, to prove theorem 4 we simply apply lemma 5.

To prove theorem 5 we apply theorem 4 and lemma 6.
We will have to prove something more to prove the strongest result, theorem 6.
Proof:
By theorem 4 we have Rl(x) ≤ dlµ(x) and Ru(x) ≤ duµ(x) for µ-almost every
x ∈ X. We need to obtain the reverse inequalities.

Since µ is w.r.d. and µ has long return time with respect to T and dlµ(x) > 0
for µ-almost every x ∈ X, if ε > 0 is small enough, we have that ∃a, γ, ρ > 0
and G ⊂ X with µ(G) > 1− ε such that if x ∈ G and r ∈ (0, ρ)

µ(Aε(x, 2r)) ≤ µ(B(x, 2r))1+γ , (12)

µ(B(x, 2r)) ≤ µ(B(x, r2))r−a
γ
2 , (13)

µ(B(x, r)) ≤ ra (14)
where Aε(x, 2r) is as in definiton 9. Now, consider
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Aε(r) := {y ∈ G|τr(y) ≤ µ(B(y, 3r))−1ε}.

Then, if d(x, y) < r(a), we have τr(y, y) ≥ τ2r(y, x)(b). Then, since B(x, 2r) ⊂
B(y, 3r), if x ∈ G then we obtain

µ(B(x, r)
⋂
Aε(r)) ≤ µ({y ∈ B(x, r)|τ2r(y, x) ≤ µ(B(x, 3r))−1+ε}) (a), (b)

≤ µ(Aε(x, 2r)) µ(B(x, 3r)) ≥ µ(B(x, 2r))
≤ µ(B(x, 2r))1+γ (12)
≤ µ(B(x, r2 ))r−a γ2 (2r)aγ (13)(14)

Then, if E ⊂ G is a maximal r
2 -separated set given by lemma (4), we have

µ(Aε(r)) ≤
∑
x∈E µ(B(x, r)

⋂
Aε(r))

≤
∑
x∈E µ(B(x, r2 ))r−a γ2 (2r)aγ

≤ 2aγra γ2
.

Here, the last step follows from (14). Then, the Borel-Cantelli lemma gives us
that for µ−almost every x ∈ G we have

τe−n(x) > µ(B(x, 3e−n))−1+ε

for all n B0 T75 0 Td [(026)]TJ/F15 9.962 �( (
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q
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6.2 Baker’s Map
Let T : [0, 1]2 → [0, 1]2 be the standard bakers map. We then have that T
is Lebesgue measure preserving. And thus, by theorem 3 we have that for
Lebesgue almost every x ∈ [0, 1]2, we have

τr(x, x) ≤ Cxr−2

for r small enough. Further, by theorem 4, since duµ(x) = d




