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CHAPTER 1

Introduction

These notes are being prepared for a course in Fall 2017 in the Stanford Department of Math-
ematics. The ultimate goal of the course is to study the propagation of singularities on mani-
folds with boundary and parametrices for boundary value problems including the Melrose{Taylor
parametrix. Throughout we will focus on the Dirichlet type problems, occasionally digressing
to discuss the Dirichlet to Neuamnn map which can be applied to a wide variety of boundary
conditions.

The material considered here comes largely from the work of Melrose [], Melrose{Sj�ostrand [],
Taylor [], Zworski [] and Farris []

The basic example to which these notes apply is that of the wave operatorP = @2
t � � g posed

on R � M where M is a compact manifold with boundary @M.

1. Notation for manifolds with boundary

2. Supported and Extendible distributions

7
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We say that a 2 Sm (T � M ) if in any coordinates (x; � ) a(x; � ) 2 Sm (Rd � Rd). Similarly, we
say a 2 Sm

phg(T � M ) if a(x; � ) 2 Sm
phg(Rd � Rd). Then there is a a symbol map � m : 	 m

h (M ) !
Sm (T � M )=hSm� 1(T � M ) given by the following procedure. Let (U� ; � � ) be an atlas onM . Then
for ' 2

� 2 C1
c (U� ) a partition of unity on M ,

� (A) =
X

�
~� �

� � (( � � 1
� ) � ' � A' � � �

� )

where ~� � : T � U ! T � Rd is the lift of � � as a symplectomorphism. Note that� m has the following
properties

(1) 0 ! h	 m� 1
h ! 	 m

h
� m�! Sm =hSm� 1 ! 0 is exact.

(2) � (AB ) = � (A)� (B ).
(3) � ([A; B ]) = � i f � (A); � (





CHAPTER 3

Basic estimates for hyperbolic equations on manifolds with
boundary

1. Energy Estimates and Well Posedness

1.1. Estimates without a boundary. We will work in the case of second order operators,
but the methods developed here apply equally well to higher order equations.

1.1.1. First order operators. We consider the problem

(3) Pt := ( D t � Op(at ))u = f; 0 < t < T; u jt=0 = u0

where

(i) at (x; � ) = a(t; x; � ) belongs to a bounded set inS1(Rd � Rd) for 0 � t � T
(ii) t 7! at is continuous with values in C1 (Rd � Rd)
(iii) Im a(t; x; � ) � � M , 0 � t � T .

We start with an energy estimate

Lemma 1.1. Let s 2 R. Then for � 2 R large enough and allu 2 C1([0; T ]; H s(Rd)) \
C0([0; T ]; H s+1 (Rd)) and p 2 [1; 1 ]

(4)
� 1

2

Z T

0
ke� �t u(t; �)kp

H s �dt
� 1

p � k u(0; �)kH s + 2
Z T

0
e� �t kPt ukH s dt:

Proof. Then considerE (t) = e� 2�t ku(t)k2
L 2 .

@t E (t) = 2 Reh@t [e� �t u]; e� �t ui

= 2 Re e� 2�t h@t u; ui � 2�E (t)

= � 2e� 2�t ImhD t u; ui � 2�E (t)

= � 2e� 2�t ImhPt u; ui � 2e� 2�t ImhOp(at )u; ui � 2�E (t)

� 2ke� �t Pt ukE 1=2(t) + 2( C � � )E (t)

where in the last line we apply the sharp G�arding inequality (1.3) together with (i), (iii), and the
fact that u(t) 2 H 1. Choosing � � C, then

@t E (t) � 2ke� �t Pt ukE 1=2(t):

Integrating in time gives

sup
0� � � t

E (� ) � E (0) + 2 sup
0� � � t

E 1=2(t)
Z th8ed8l0.9091 Tf -453.527 -13.217 .94]TJ2[(E)]TJ/F33 7.9701 Tf;6.797  Td19701 Tf;6.797  Td19701 Tf;6.797  P354(e)]TJ/F43 7.9701 Tf 5.079 4.504 Td [(�)]TJ/F41 /F42 10.9091 Tf 6.245 0 145tP
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So,
�

sup
0� � � t

E 1=2(� ) �
Z t

0
ke� �s Psukds

� 2
� E (0) +

� Z t

0
ke� �s Psukds

� 2

and in particular,

e� Ct ku(t)k � k u(0)k + 2
Z t

0
ke� CsPsukds:

Then, taking � > 2C large enough and using thatke� �t= 2� kL p (Rt ) � 2 for � > 0. So,

e� �t ku(t)k � e(C� � )t ku(0)k + 2
Z t

0
e� �s kPsuke(C� � )( t � s)ds:

and taking � > 2C, and integrating both sides in t,
 Z T

0

�
e� �t ku(t)k

� p
dt

! 1=p

� k e� �t= 2kL p ku(0)k + 2
 Z T

0

� Z t

0
e� �s kPsuke(C� � )( t � s)ds

� p
dt

! 1=p

:

Applying Minkowski’s inequality then gives
 Z T

0

�
e� �t ku(t)k

� p
dt

! 1=p

� k e� �t= 2kL p ku(0)k + ke� �t= 2kL p

Z T

0
e� �s kPsukds

Then, sinceke� �t= 2kL p � (2=� )1=p, the lemma follows for s = 0.
To �nish the proof, apply the s = 0 case to ~A t = Op( h� i s)A t Op(h� i � s) with u = Op( h� i s)u:

�

Theorem 1.1 (Well-posedness for �rst order equations). Let (i)-(iii) hold and s 2 R. Then
for all f 2 L 1((0; T ); H s(Rd)) and � 2 H s(Rd), there is a unique solutionsu 2 C([0; T ]; H s(Rd))
of (3) and (4) holds.

Proof. We start with uniqueness. Suppose (3) holds with� = 0 and f = 0. Then, since
u 2 C([0; 1];H s(Rd)), Op( at )u 2 C([0; T ]; H s� 1(Rd)) and hence@t u 2 C([0; T ]; H s� 1(Rd)) : That
is, u 2 C1([0; T ]; H s� 1) and in particular, (4) implies that u = 0.

To show existence, we apply the energy estimate to the adjoint problem. Supposev 2
C1

c (( �1 ; T ) � Rd). Then, observe that by (4) applied with t 7! T � t gives for any r 2 R,

sup
t2 [0;T ]

kv(t)kH � r (Rd ) � C
Z T

0
k(D t � Op(at ) � )vkH � r (Rd )dt:

Thus, for f 2 L 1([0; T ]; H r (Rd)), � 2 H r (Rd),

(5)

�
�
�
Z T

0
hf (t); v(t)i Rd dt � ih�; v (0)i

�
�
� � (kf (t)kL 1 ([0;T ];H r (Rd )) + k� kH r ) sup

[0;T ]
kv(t)kH � r (Rd )

� C(kf (t)kL 1 ([0;T ];H s (Rd )) + k� kH r )
Z T

0
k(D t � Op(at ) � )vkH � r (Rd )dt:
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By the Hahn-Banach theorem there existsu 2 L 1 ([0; T ]; H r (Rd)) so that
Z T

0
hu; (D t � Op(at ) � )v)i dt =

Z T

0
hf (t); v(t)i dt � i h�; v (0)i

for all v 2 C1
c (( �1 ; T ) � Rd) in particular, u solves (3) as a distribution, so all we need to do is
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with ~Pj 2 S2� j . Iterating this procedure gives

P = ( D t � � i )E i + R

where E i =
P 1

k=0 E ik D k
t with E ik 2 C1 (R; 	 1� k
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Next, observe that

kD t ukH s� 1 � k E1ukH s� 1 + k� 2ukH s� 1 + CkukH s� 1

and hence

(8)
1X

k=0
kD k

t ukH s+1 � k � C
X

i

kE i ukH s + CkukH s :

Using (7), together with (4) applied to u

u
19 T0 T24

k=0

kD k t ukHs+1�k
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The Hahn Banach theorem implies that there existsu 2 L 1 ((0; T ); Hs+1 ) such that (10) holds
with Pu = f , D j

t u(0) = uj .
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We now need to show the other inclusions. Together with the estimates, they are obtained
from the following lemma.

Lemma 2.2. Let � m;s (� ) = ( h� 0i + i� 1)m h� 0i s: Then � m;s (D ) is an isomorphism of _S(Rd
+ )

extending by continuity to L 2(Rd
+ ) ! _H � m; � s(Rd

+ ): Moreover, �� m;s (D ) extends by continuity
from C1

c (Rd
+ ) to an isomorphism from H m;s (Rd

+ ) to L 2(Rd
+ ). In particular,

kukm;s = k �� m;s (D )ukL 2 (Rd
+ )

and H m;s (Rd
+ ) consists of thoseu 2 S0(Rd

+ ) with �� m;s u 2 L 2.

Proof. One can easily check that suppF � 1(� m;s ) � Rd
+ and suppF � 1( �� m;s ) � Rd

� : (For
example by the Paley-Weiner theorem.) Therefore, �m;s (D ) maps _S(Rd+ ) continuously to itself
and has inverse �� m; � s(D ). The extension to L 2 then follows sincej� m;s (� )j2 = h� i 2m h� 0i 2s: The
second statement follows by duality. �

�

We record the following consequence of Lemma 2.2 for later use.

Corollary 2.1. Supposeu 2 _H � m; � s(Rd
+ ). Then there exist u0 2 _H 1� m; � s� 1(Rd

+ ) and
u1 2 _H 1� m; � s so that

u = u0 + D1u1:

Proof. Observe that � m;s (D ) = ( hD 0i + iD 1)� m� 1;s. So, since �m;s : L 2 ! _H � m; � s is an
isomorphism, there existsv 2 L 2 such that

u = � m;s v = ( hD 0i + iD 1)� m� 1;sv

and observing that

hD 0i � m� 1;sv 2 _H 1� m; � s� 1; i � m� 1;sv 2 _H 1� m; � s:

�

2.0.2. The local problem. We start with the case X = Rd and � (x) = x1. Then,

P =
2X

j =0
Pj (x1; x0; Dx0)D j

x1 ; Pj 2 Di� 2� j

and by the strict hyperbolicity assumption 0 < jP2j. Hence, dividing by a nonzero smooth function
we may assume thatP2 = 1. Moreover, sinceP is a homogeneous polynomial of degree 2 in (� 1; � 0)
for which that map � 1 7! p(x; � 1; � 0) has two distinct real zeros, we may assumeP satis�es the
assumptions of Theorem 1.2 forx 2 Y .

Let � 1(x; � 0); � 2(x; � 0) be the roots of p(x; �; � 0). Fix � 2 C1
c (Rd) with � � 1 in Y and de�ne

~p =
2Y

j =1
(� 1 � ~� j ); ~� i = �� j + (1 � � )j j� 0j:
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Now, let ~P 2 Di� 2(Rd) with principal symbol ~p. Then ~P satis�es the hypotheses of Theorem 1.2
for x 2 Rd and has constant coe�cients outside a compact set.

Lemma 2.3. Suppose thatP is strictly hyperbolic with respect tox1 in X � Rd and let Y � X
be open and precompact. Iff 2 H s;t (Rd

+ ) and s � 0, uj 2 H s+ t+1 � j (Rd� 1), j < 2, then there
exists u 2 H s+1 ;t (Rd

+ ) such that D j
1u 2 C0(R; H s+ t+1 � j (Rd� 1)) when x1 � 0 and

Pu = f in Y \ Rd
+ ; D j

1u = uj in Y \ (Rd� 1 � f 0g); j < 2:
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Now, U = u0 + D1u1 2 _H s+1 ;t and
~PU � f = [
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Proof. Suppose thatPu = 0 in X 0b, suppu � f � (x) � 0g. Then, by construction suppu �
f � > � g where � is uniform on X ab. In particular, iterating �nitely many times, u = 0.

For uniqueness with s � 0 an initial conditions imposed, suppose that Pu = 0 in X 0b,
u 2 H 1;t (X 0b) with D j ujt=0 = 0 for j < 2. Then, extending u by 0 into � < 0, we have
u 2 H 1;t (X
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4. Existence and Uniqueness

References: Hormande:III 24.1

Theorem 4.1. Let f 2 �H s
loc(X o), u0 2 H s+1 (@X) where s � 0 and assumeu0; f vanish on

f � < a g, that p is strictly hyperbolic with respect to � and (11) holds. Then there is a unique
u 2 �H s+1

loc (X o) such that 8
>><

>>:

Pu = f in X o

u = u0 on @X
u = 0 on � < a:

Moreover u satis�es for every a0 < a < b < b 0, [TODO]estimates
kuk �H s+1 (a<�<b ) � C(kf k �H s (a0<�<b 0) + ku0kH s+1 (@X) ):



CHAPTER 4

Propagation of Singularities

In this chapter we study an operator P 2 Di� 2(X ) for X a manifold with boundary @Xand
interior X o. We assume throughout that @X is non-characteristic for P . That is, p does not
vanish on N � @X. For propagation in X o, we will allow P to have an imaginary principal symbol.
However, when it comes time to study the problem near the boundary, we will insist that the
symbol be real valued.

1. Propagation in the bulk

2. Propagation of singularities for strictly hyperbolic problems

We now prove the propagation of singularities result for pseudodi�erential operators.

Theorem 2.1. Let X be a compact manifold andP 2 	 m
phg(X ) with � (P ) = p � iq with p; q

real valued. Suppose thatA; B; B 1 2 	 0
phg(M ) such that

(1) for all (x0; � 0) 2 WF( A), there exist T > 0 so that exp(� Th� i � m+1h+4.9091 Tf 6TJ/F40 10.9091 Tf 22.5763.959 (x)]TJ/F33 7.9701 Tf 6.235 -1.637 Td [(0)]TJ/F40 10.9091 Tf 4.733 1.632 Td [(;)-167(�)]TJ/F33 7.9701 Tf 9.621 -1.637 Td [(0)]TJ/F16 10.9091 Tf 4.732 1.637 Td [())]TJ/F42 10.9091 Tf 7.273 0 Td [(2)]TJ
ET
q
1 0 0 1 194.764 -23915 cm
d [ d 0 J 0.398 w 0 0 m 18.334 Td d [(BT
/F16 10.9091 Tf 4.733 1 -23915 Td [(WF(el)]20/F16 10.9091 Tf 52.793 Td d [(()]TJ/F40 10.9091 Tf 4.243 0 Td [(M)]TJ/B16 10.9091 Tf 8.182 0 82 [())]TJ/F37 10.9091 Tf 4.242 0 Td [(,)-358(t6 10.9091 Tf -39.381  0 T543 Td 286exp()]TJ/F42 10.9091 Tf 20.91 0 Td09[(�)]TJ/F40 10.9091 Tf 8.484 0 Td9 (x)]TJ/t42 10.9091 Tf 20.91 0 Td [(.)]TJ
h40 10.9091 Tf 4.243 0 Td [(M)]TJ/TJ/F42 10.9091 Tf 5.275 0 Td [(i)]TJ/F43 7.9701 Tf 4.242 3.959 4.5[(In)-33TJ/F41 7.9701 Tf 6.587 0 Td [(m)]TJ/F33 7.9701 Tf 7.49 0 Td [(+1)]TJ/F40 10.9091 Tf 11.319 ]TJ/F434.5[(In)-33[(h)697 0 Td [(X)]TJ/F41 7.97066 7.940 10.943 7.9701 Tf 7.49 0 Td [(+6.9091 Tf 6TJ/F40 10.9091 Tf 22.5763.959 (x)]TJ/F33 7.9701 Tf 6.235 -1.637 Td [60)]TJ/F40 10.9091 Tf 4.733 1.632 Td [6;)-167(�)]TJ/F33 7.9701 Tf 9.621 -1.637 Td [60
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is a di�eomorphism onto its image and
�( � T � �; � T + �; V ) � �ell(B ); �( � T
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We will study each of these regions separately. There is no propagation inE and the propagation
in H results in broken bicharaceteristics. The propagation throughG is subtle and will require a
great deal of analysis.

4.1. The elliptic region.
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Also,
kDx1 u� k2

L 2 ! k Dx1 uk2
L 2 ;

completing the proof. �

We now prove Lemma 4.2

Proof. We proceed using standard energy estimates.

(Pu; u)
H

� 1
; _H 1 = ( D 2

x1 u; u) + ( b(x; D 0)Dx1 u; u) + ( c(x; D 0)u; u)

kDx1 uk2
L 2 + ( Dx1 u; b� (x; D 0)u) + ( c(x; D 0)u; u)

Now, sinceT � f x1 = 0g � E , there exists � > 0 so that

c(x; � 0) �
b2(x; � 0)

4
+ � j� 0j2:

Therefore, there exists� 0 > 0 so that

(c(x; D 0)u; u) �
(1 + � 0)

4
kb(x; D 0)uk2

L 2 �
�
2

kr x0uk2
L 2 � Ckuk2

L 2 :

On the other hand

j(Dx1 u; b� (x; D 0)u)j � k Dx1 ukL 2 kb� (x; D 0)ukL 2 �
1 + � 0

4
kb(x; D 0uk2

L 2 +
1

1 � � 0
kDx1 uk2

L 2 :

So,
j(Pu; u)j � c(kDx1 uk2

L 2 + kr x0uk2
L 2 ) � Ckuk2

L 2 :

In particular,

ckuk2
H 1 � k PukH � 1 kukH 1 + ( C + c)kuk2

L 2 � � � 1kPuk2
H � 1 + � kuk2

H 1 + Ckuk2
L 2

So, choosing 0< � < c= 2,
kuk2

H 1 � C(kPuk2
H � 1 + kuk2

L 2 ):
�

Next, let E



4. PROPAGATION NEAR THE BOUNDARY 29

Lemma 4.4. Supposeu 2 L 2(Rd
+ ), ujx1=0 = u0 2 H 1=2 and Pu 2 H � 1. Then,

kukH 1 � C(kPukH � 1 + ku0kH 1=2 ):

Proof. Let � 2 C1
c (Rn� 1) with � � 1 near 0. Then put u� = � (�D 0)u. Then u� ! u 2 L 2,

Pu� ! Pu 2 H � 1, u� 2 H 0;t for all t. Now,

Pu� = � (�D 0)Pu + [ � (�D 0); b(x; D 0)]Dx1 u + [ � (�D 0); c(x; D 0)]u 2 H � 1;t

for any t. In particular,
D 2

x1 u� 2 H � 1;t � 1; Dx1 u� 2 H � 1;t :

Therefore, Dx1 u� 2 H 0;t � 1 and then, sinceu� 2 H 0;t � 2, u 2 H 1;t � 2: In particular, choosing t � 2,
u� 2 H 1. Hence,

ku� kH 1 � C(kPu� kH � 1 + ku� kL 2 + ku� jx1=0 kH 1=2 ) � 2C(kPukH � 1 + kukL 2 + ku0kH 1=2 ):

In particular, there exists a subsequence so thatu� * ~u in H 1. But u� ! u 2 L 2, so u 2 H 1 and
the estimate continues to hold. �

Lemma 4.5. Supposes � 0, u 2 H s;t (Rd
+ ), ujx1=0 = u0 2 H s+ t+ 1

2 . Then

kuk
H

s+1 ;t � C(kPukH s� 1;t + kukH s;t + kujx1=0 k
H s+ t + 1

2
):

Proof. We start with t = 0, Observe that

P (hD 0i s)u = hD 0i sPu + [ b(x; D 0); hD 0i s]Dx1 u + [ c(x; D 0); hD 0i s]u

. So,
khD 0i sukH 1 � C(khD 0i sPukH � 1 + kukH 0;s + khD 0i su0kH 1=2 :

In particular,
kukH 1;s � CkPukH � 1;s + kukH s; 0 + ku0k

H s+ 1
2
:

Iterating as before, we then obtain Therefore,

kukH s+1 ;0 � CkPuks� 1;0 + ku0k
H

1
2 + s :

Now, for t 6= 0,

khD 0i t ukH s+1 ;0 � C(khD 0i t PukH s� 1;0 + kukH s;t + khD 0i t u0k
H s+ 1

2

which concludes the proof. �

Finally,

Lemma 4.6. SupposeT � f x1 = 0g � E , u 2 N (Rd+ ),

Pu = f 2 N (Rd+ ); ujx1=0 = u0:

Then,
WF b(u)jT � f x1=0 g = WF b(f )jf x1=0 g [ WF b(u0):
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Proof. Here, the inclusion of the right hand side in the left is automatic from the de�nition
of WFb. Therefore, we need only show that the right hand side is contained in the left. Suppose
that (0 ; � 0

0) =2 WF b(f )jf x1=0 g [ WF b(u0). Fix � > 0 so that

f 0 < x 1 � � g \ f x j (x; � 1; 0) 2 WF( u) [ WF( f )g = ; :

In particular, this is possible since WFb(u)jf x1=0 g � T � f x1 = 0g and WFb(u) is closed. Therefore,
for x1 > 0 small and (x; � ) 2 WF( u), x1j� 1j < j� 0j.

Now, let

W 0 := WF b(f )jf x1=0 g [ WF b(u0) [ f (x; � 0) j 0 < x 1 � �; (x; � ) 2 WF( f ) for some � 1g:

This is closed since WFb(f ) is. Let � 2 S1 (R � T � Rd� 1) with � (x; � 0) = 0 for x1 � � and order
�1 in a conic neighborhood ofW 0. We call such a � a goodc cuto�. Then, since WF(f ) avoids
the N � f x1 = cg for c � � , � (x; D 0)f 2 C1 [TODO]references .

Now, chooses; t such that for � 2 Sj good,

� (x; D 0)u 2 H s;t � j
loc :

Now, for � 2 S0, good

P � (x; D 0)u = � (x; D 0)f + [ P; � (x; D 0)]u 2 H s� 1;t :

Indeed,
[P; � (x; D 0)]u = P0(x; D 0)� 0(x; D 0) + Dx1 P1(x; D 0)� 1(x; D 0)

where Pi � i is a good cuto� in S1� i .
By iteration we obtain then that

� (x; D 0)u 2 H s+1 ;t � 1

and in particular,
� (x; D 0)u 2 H s0 ;t 0

with s0 � 0.
Now, observe that

� (x; D 0)ujx1=0 = � (x; D 0)u0 2 C1 ;
So

P � (x; D 0)u 2 H s0 � 1;t 0 ; � (x; D 0)ujx1=0 2 C1 :

Therefore, by Lemma 4.5, � (x; D 0)u 2 H s0+1 ;t 0 and in particular, � (x; D 0)u 2 C1 . Now, since
(0; � 0

0) =2 W 0, we may take � (x; � 0) good with � (0; � 0
0) = 1 and hence by [TODO]reference ,

(0; � 0
0) =2 WF b(u). �

Finally, we return to the general situation and prove our main theorem for singularities there.

Theorem 4.1. Suppose thatP 2 Di� 2(X ) with @X non-characteristic for P . Supposef 2
N (X ) and

Pu = f 2 X o; uj@X = u0

Then,
WF b(u)j@X \ E = (WF b(f )j@X [ WF( u0)) \ E :
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Definition 4.1. We de�ne a compressed broken bicharacteristic forp as a continuous map

 (t) : I ! ~� n G

where I � R is an interval and

- When  (t) 2 ~� \ T � X o,  (t) 2 C1 and  0(t) = Hp( (t)) :
- f t 2 I j  (t) 2 Hg is a discrete subset ofI .

Locally near a point (x0; � 0) 2 H , such a broken bicharacteristic is given by

 (t) =
(

� (exp(tH p)(0; x0;
p

r0(x0; � 0); � 0)) 0 � t � �
� (exp(tH p)(0; x0; �

p
r0(x0; � 0); � 0)) � � � t � 0:

Our next theorem says that singularities of solutions toPu = 0 with uj@X = 0 are invariant
along such broken bicharacteristics.

Theorem 4.3. Suppose thatP 2 Di� 2(X ) with @X non-characteristic for P . Supposef 2
N (X ) and

Pu = f 2 X o; uj@X = u0

Suppose that : I ! ~� is a broken bicharacteristic such that (I ) \ (WF b(f ) [ WF( u0)) = ; , then
for any t0 2 I if  (t0) =2 WF b(u) then

 (I ) =2 WF b(u):

Notice that for  (I ) \ T � @X = ; , Theorem 4.3 is an easy consequence of Theorem 2.1.
Therefore, in the proof we may work locally near a point t 2 I such that  (t) 2 H . Without
loss of generality, we therefore assume� 0 =  (0) 2 H . Then, since � 2 H , freezing coe�cients
as in (14), we may replaceP by ~P such that T � @X� H so that ~Pu has the same wavefront set
properties asPu near � 0
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with � (� j; � ) = �
p

r (x; � 0): We will show that the error can be improved to E j +1 2 S� j . For this,
let

� j +1 (x; � 0) = �
� (E j )(x; � 0)
2
p

r (x; � 0)
2 S� j :

Then

� j +1 (x; D 0)(Dx1 � � j; � ) + E j = � j +1 (x; D 0)(� j; + � � j; � ) + E j + � j +1 (x; D 0)(Dx1 � � j; + )

= � j +1 (x; D 0)(� j; + � � j; � ) + E j

+ ( Dx1 � � j; + )� j +1 (x; D 0) + [ � j +1 (x; D 0); Dx1 � � j; + ]

= E j +1 ;1(x; D 0)

+ ( Dx1 � � j; + � � j +1 (x; D 0)) � j +1 (x; D 0) + E j +1 ;2(x; D 0)

where E j +1 ;1; E j +1 ;2 2 S� j :

In particular,

P = ( Dx1 � � j; + )(Dx1 � � j; � ) + E j (x; D 0)

= ( Dx1 � � j; + )(Dx1 � � j; � ) � � j +1 (x; D 0)(Dx1 � � j; � )

+ ( Dx1 � � j; + � � j +1 (x; D 0)) � j +1 (x; D 0) + E j +1 ;2(x; D 0) � E j +1 ;1(x; D 0)

= ( Dx1 � � j; + � � j +1 (x; D 0))( Dx1 � � j; � + � j +1 (x; D 0)) + E j (x; D 0)

with E j 2 S� j . Let � j +1 ;� = � j; � � � j +1 (x; D 0). Then de�ning � � � � 0;� �
P

j � 1 � j gives the
desired factorization.

Repeating the arguments starting with the ~� factorization completes the proof �

Next, we construct an operatorQ(x; D 0) with desirable microlocalization properties such that
[Dx1 � � + ; Q] 2 S�1 . This will allow us to complete the proof of Theorem 4.3 by e�ectively
microlocalizating Pu = f to a broken bicharacteristic.

Lemma 4.8. Fix � 0 2 H ,  w3>.505 Td [(0)]T817(pro)-27(of)-417(of)-416(Theorem)-416(4.3)-416(b)27(7006)]TJ/F26 9.9626 Tf 2.636 Td [(!)]TJ/F3 -10.46 Td [(j)]TJ/F+-27(of)-417(of)-416(Theorem)-416(4.3)-416(b)27(7006)]TJ/F26 9.9626 Tf 2.636 Td [(!)]TJ/F3 -10.46 Td [86 T375 [(�)]TJ/F41 7.9701 Tf 7.-333(pro)-28(of)]TJ/F44 10.9091 Tf 226.171 0 Td 384 0 Td [(+1)]TJ/F-
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Proof. Fix ~q0 2 S0(T � @X) with supp q0 � U \ T � @X and q0(� 0) = 1. Then, since @x1 is
transverse to f x1 = 0g, there exists q0 2 C1 ([0; � ) �
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Observe that

(22) (Dx1 � ~� � )Q� (Dx1 � ~� + ) = Q
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implies � 0 =2 WF b(u). Switching the roles of Q� , we also obtain that if  (� � ) =2 WF b(u), then
� 0 =2 WF b(u) which completes the proof.

�

[TODO]state estimates

5. The generalized bicharacteristic ow

6. The Weyl law on a manifold with boundary

7. Microlocal defect measures



CHAPTER 5

Equivalence of Glancing Hypersurfaces

1. Symplectic preliminaries

2. Folding relations

3. The billiard ball maps

4. Formal solution

5. Completion of the proof

6. Some consequences
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