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ABSTRACT: A model of place-cell firing is presented that makes quan-
titative predictions about specific place cells’ spatial receptive fields
following changes to the rat’s environment. A place cell’s firing rate is
modeled as a function of the rat’s location by the thresholded sum of the
firing rates of a number of putative cortical inputs. These inputs are tuned
to respond whenever an environmental boundary is at a particular dis-
tance and allocentric direction from the rat. The initial behavior of a place
cell in any environment is simply determined by its set of inputs and its
threshold; learning is not necessary. The model is shown to produce a
good fit to the firing of individual place cells, and populations of place
cells across environments of differing shape. The cells’ behavior can be
predicted for novel environments of arbitrary size and shape, or for
manipulations such as introducing a barrier. The model can be extended
to make behavioral predictions regarding spatial memory. Hippocampus
2000;10:369–379. © 2000 Wiley-Liss, Inc.
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INTRODUCTION

Place cells in the hippocampus of the rat exhibit location-specific firing. A
given cell fires only when the animal is in a particular part of its environment
(the place field). When a place cell is recorded in a series of rectangular
environments, the location of peak response shows some regularity across
environments, e.g., often maintaining a fixed distance from the two nearest
walls (O’Keefe and Burgess, 1996). Regularity in the locations of place fields
has also been observed across a variety of different-shaped environments
(e.g., squares, circles; Lever et al., 1999). Although this regularity appears to
be an important and reliable feature of place cells in these experiments, other
experiments have shown “remapping,” i.e., unrelated patterns of firing in
different environments (Muller and Kubie, 1987; Quirk et al., 1992) or
mixtures of regularity and remapping (Skaggs and McNaughton, 1998).
The occurrence of shape-based remapping may well depend on extensive

experience in both environments (Lever et al., 1999 and
unpublished data). Our aim is to explain as much as
possible of the regularity in the initial pattern of place-cell
firing in new environments. Does a place cell need to
learn its response to a new environment? Or can its be-
havior be understood as a hardwired response to the ge-
ometry of the environment? We will argue for the latter
position, and describe a model of the cortical inputs re-
quired for such a response.

In the rectangular environments studied by O’Keefe
and Burgess (1996), place fields can be modeled as the
thresholded sum of two or more putative inputs of spe-
cific functional form. Inputs have a Gaussian tuning
curve to the distance to a wall in a given allocentric di-
rection (e.g., north, south). Each of the inputs is tuned to
respond maximally when there is a wall at a specific dis-
tance along a specific direction. The breadth of the tun-
ing increases with the distance to which it is tuned. This
simple model can account for the consistency in the lo-
cation of firing between environments of different size
and aspect as well as various features of the shape of the
fields, such as their elongation in rectangular environ-
ments compared with square (O’Keefe and Burgess,
1996; Burgess and O’Keefe, 1996). In this study it was
convenient to model place fields using four inputs, each
tuned to respond to distances in the directions perpen-
dicular to each of the walls, since these were the four
directions along which the shape of the environment was
varied. However, in general we would not expect the
directions to which inputs to a given place cell are tuned
to be determined by a particular environment. Although
a place cell will tend to fire when the various walls match
the tuned distances of its inputs, those distances can be
measured in many directions. The general model simply
suggests that place cells are driven by inputs sensitive to
the distance and allocentric direction of boundaries
(“boundary vectors”) in the environment, with several
such inputs combining to produce location specificity.
This model builds on previous models of place cell firing,
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many of which involve distances and/or bearings to landmarks
(e.g., Zipser, 1985; Sharp, 1991; O’Keefe, 1991; McNaughton et
al., 1994; Burgess et al., 1994; Touretzky and Redish, 1996).
However, these previous models do not give any special status to
boundaries of the environment as compared with other landmarks
and do not attempt to find the precise functional form of the inputs
required to predict its behavior quantitatively.

What constitutes a boundary is a question that requires further
empirical investigation, but it is clear that walls which impede
movement are particularly potent cues in determining the location
of peak response for most place cells (O’Keefe and Burgess, 1996).
Place fields near to a small, open box forming part of a larger
apparatus and moved in the laboratory frame also maintain fixed
locations relative to the walls of the box (Gothard et al., 1996a,b).
Other studies show that the presence of a transparent barrier to
movement is sufficient to affect place-cell firing patterns (Muller
and Kubie, 1987). Place fields also maintain their positions relative
to the edges of a raised holding platform (O’Keefe, 1979) as it is
moved in the laboratory frame, suggesting that a drop which im-
pedes movement also constitutes a boundary. Other data suggest
that as well as impeding movement, barriers must be extended in
space to affect place field location. For instance, Cressant et al.
(1997) showed that small objects placed inside a cylindrical envi-
ronment did not affect the location of firing when they were sep-
arated, but did when they were arranged in a row. We do not
assume that information concerning the location of boundaries in
the environment comes exclusively from the visual modality. Al-
though when visual inputs are available they tend to dominate
other sources of information (e.g., Jeffery et al., 1997), it has long
been thought that place cells will use any available external or
internal information to maintain location specific firing (e.g.,
O’Keefe and Nadel, 1978; Hill and Best, 1981).

MODEL

Framework

We model the geometric inputs to the place cells as a population
of boundary vector cells (BVCs), each of which responds maximally
when a boundary is at a particular distance and allocentric direc-
tion to the rat, as shown in Figure 1.

The receptive field of each BVC is a product of two Gaussians,
one a function of distance, the other of allocentric direction. The
distance tuning of the cells is narrow for cells which have a peak
response to boundaries near the rat, but wider for greater distances
(see Fig. 2). This is consistent with the rat being able to judge short
distances more accurately than long distances (cf. Weber’s law),
and it means that inputs tuned to shorter distances exert more
influence on place cell firing than BVCs tuned to long distances,
everything else being equal. The angular extent (sang) of each field
is assumed to be constant. Thus, for a BVC i whose response is

greatest to a boundary at distance di





Field Shape and Location

Before simulating any specific cell, we can make a number of
general predictions regarding place field shape and location in dif-
ferent environments. These are predictions that follow from the
form of input representation we have postulated, and do not de-
pend on the parameters of the model, or the specific inputs that
activate a place cell.

Where the directional reference frame is anchored by the pres-
ence of salient extramaze orientation cues, the location of the field
in different environments, as measured by the location of peak
firing, will generally be fixed with respect to the walls that bound
the environment along one or more of its sides (e.g., to the north or
west).

The shape of the boundaries will affect the shape of the fields,
especially near the edges of the environment. Figure 3 gives
examples of the different shaped fields predicted for different
environments for a cell with the same BVC inputs. Fields tend
to be crescent-shaped where they are close to the perimeter of a
circular environment (cf. Muller et al., 1987). The shape of
fields close to barriers is also influenced by the barrier’s orien-
tation relative to the directional reference frame. For example,
rotation of a square environment can produce a range of shapes
from bar-shaped fields parallel to the barrier (see the “diamond”
in Fig. 3) to more confined elliptical fields (see the small square
in Fig. 3).

Physiological Predictions

To test the model, we make detailed physiological predictions
about the behavior of a particular place cell in a novel environment.
To do this, we need to solve the inverse problem: determining
which BVCs drive the place cell from the firing rate map obtained
in a first set of environments, and using this knowledge to predict
the firing-rate maps in novel environments. Although each place
cell may receive inputs from many geometry-sensitive inputs,
models involving few BVCs are more likely to show robust gener-
alization to novel environments than models involving many
BVCs, as the extra degrees of freedom are likely to cause the model
to overfit the data. Our aim therefore is to find a small number of
BVCs that can account for the data, and thus produce robust
physiological (firing rate) predictions, rather than a detailed de-
scription of the inputs at the physiological level.

For any single environment, the problem is insoluble, since
there are many combinations of BVCs that could account for the
observed firing. However, some BVCs (e.g., those that themselves
fire strongly at the location where the peak response of the place cell
is seen) are more likely to be involved in driving the place cell than
others (e.g., those that fire strongly where the place cell does not fire
at all), so it is possible to systematically reduce the set of BVCs
considered. By fitting fields recorded in a number of environments
with different boundary configurations, the number of fitting
combinations can be reduced to a level where robust predictions
from the model are possible.

Fitting Procedure

Firing rate maps recorded from the same place cell in a variety of
environments are smoothed and normalized (F(x)). Simulated fir-
ing rate maps can then be generated for any population of BVCs
(covering the range of distances and directions the rat will encoun-
ter in the experimental environments) in each environment (fi(x)),
using Eq. (2). Simulated place-cell firing maps (thresholded sums
of the BVC firing rate maps) can then be fitted with the experi-
mental data.

To determine the set of BVCs that best explain the observed
data, we need to invert Eq. (3). One solution is to estimate the
place field as a simple linear combination of inputs, i.e.,

F~x! < O wi fi~x) (4)

This allows a direct calculation of the solution with the best fit (in
the “least squares” sense) to the experimental data by inverting Eq.
(4) to find the values of wi. However, modeling place fields that can
have zero firing rates in entire environments requires the nonlinear
threshold of Eq. (3) rather than a linear model. We are also reluc-
tant to abandon the simplicity of Eq. (3) by introducing the large
set of variable weights (wi in Eq. (4)). Although models obtained
by this approach can fit the data well (see Burgess et al., 2000), it is
necessary to model a large number of BVCs, representing an entire
population of inputs which can encode for all distances and direc-
tions. This can lead to problems of overfitting and poor generali-
zation.

Ideally, we could use a Bayesian framework to find the proba-
bility of all sets of BVC inputs, given the data and our assumptions
concerning the distribution of BVCs available. This could be used
to generate a probability distribution of the firing rate at each point
in a novel environment. However, this does not seem readily trac-
table, and remains for future work.

Instead, the approach we use here is to choose a smaller popu-
lation of BVCs whose firing fields ( fi(x)) are compatible with the
observed data, and from them select the best-fitting combination
of BVCs by “brute force” (i.e., by calculating all potential solu-
tions). Compatible BVCs are those which represent vectors from
each observed location of peak firing to the walls of the environ-
ment in all directions. Peaks were defined as contiguous regions
where firing rate exceeded half the maximum rate, and the distance
and direction of the peak from the walls were measured with re-
spect to the pixel showing the maximum firing rate within each
such region. As fitting each combination of BVCs is fairly compu-
tationally intensive, the number of BVCs involved was constrained
to make a brute force solution practical. This was done in two
ways:

1. Boundary vectors to be considered were quantized to a polar
grid (with angular resolution 18° and radial resolution at four
pixels or 9.76 cm).
2. Only combinations where all BVCs represented vectors or-

thogonal or opposed to one another were considered (i.e., there
were only 2–4 BVCs in each combination). This latter constraint
is reasonable, since cells representing very similar boundary vectors
are likely to be redundant (their firing fields covary strongly with
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one another), and BVCs with very similar bearings combine to
produce extremely elongated fields, in contrast to the more sym-
metrical fields that are observed experimentally.

All combinations meeting the above constraints were consid-
ered. For each combination, the sum of the BVC firing fields was
calculated, and the threshold T, and the global weighting param-
eter A (see Eq. (3)), were varied until the fit with the data was
maximized (simplex minimization). Figure 4 shows the best-fitting
solution obtained for each of the 28 fields described by O’Keefe
and Burgess (1996), using a maximum of four BVCs. Even in the
case of a model using four BVCs, only seven independent param-
eters are used: the four BVC distance tunings, and one direction
defining the four (orthogonal) BVC direction tunings and param-
eters A and T.

Despite the strong constraints we applied to the combinations of
boundary vector cells considered, the model fits the data remark-
ably well, accounting for the shape and size as well as the location
of most fields.

The main discrepancies with the data were where the model
predicted either firing in an environment where none was ob-
served, or less frequently, the absence of firing where in fact firing
was observed. These discrepancies suggest that place cells’ firing
thresholds sometimes vary from one trial to another, due to factors
other than the geometry of the environment.

Having arrived at a solution to the inverse problem, the BVCs
implicated in driving the place cell in one set of environments can
be used to calculate the expected firing rate in a novel environment
or set of environments. Figure 5 shows how the model fits a place
cell’s firing in four environments and how the BVCs found are
used to predict its firing in four novel environments. Figure 6
shows how the model predicts accurately not just the location but
also the shape of fields in a variety of environments. In particular,
the model predicts that the cell, which fires close to the south wall
in a rectangular environment, will produce an additional firing
field in response to an east-west barrier introduced into the middle
of the box. The model also correctly predicts the location of the
field observed in right-angled triangles of different orientations.
The firing field is extended along the hypotenuse of the triangle
when the right angle is in the northeast corner, and adjacent to the
south wall when the right angle is in the southeast.

Statistical and Behavioral Predictions

We can make some predictions concerning the way in which the
form of representation we have suggested for the inputs to the
hippocampus affects the statistical properties of a population of
place cells, and the consequences that these statistical properties
might have for behavior. In order to develop these ideas further, it
is necessary to model a population of BVCs and a representative
population of place cells with inputs from these BVCs. Clearly
both entail additional assumptions which are discussed briefly be-
low before we turn to the results of our simulations.

As boundary vector cells are purely theoretical at present, it is
desirable that our predictions do not rest too heavily on our as-
sumptions about the detailed shape and size of their receptive fields

(which are determined by the parameters sang, b, s0, or their
number and distribution in space. Nonetheless, in order to simu-
late a population of BVCs, we are obliged to make some assump-
tions about these issues, and where we believe these have important
qualitative effects on our predictions, we have noted the fact. For
practical reasons, we have simulated a small number of BVCs
(200), which we distributed so as to cover space evenly in 20
directions, and 10 distances covering the range encountered in
typical experimental environments. The parameters governing the
width of the receptive fields of BVCs were the same as those used
above in Physiological Predictions, and were chosen so that the
overlap between adjacent fields was sufficient to allow walls at any
distance or direction to activate some of the BVCs (see Appendix
for more details).

The proportion of available inputs activating any given place cell
is another area where we are obliged to make additional assump-
tions in order to simulate a representative population of place cells.
In Physiological Predictions (see above), we simulated place cells
with four or fewer BVC inputs to avoid overfitting the data, thus
allowing us to make robust predictions. These inputs were also
constrained to be separated by 90° to one another. Since we wish to
remove these constraints in the following simulations, which rely
on generating a representative sample of place cells with a random
selection of BVC inputs, we assume that each place cell has 10
BVC inputs (5% of the total number of simulated inputs). This
figure is sufficient to avoid a large proportion of elongated fields (a
smaller sample of randomly chosen BVCs is also likely to sample
the different directions unevenly, which produces elongated
fields), while producing a good proportion of strongly localized,
unimodal fields in line with experimental observation.

Statistical Properties of Populations
of Place Cells

We investigated whether the statistical properties of populations
of place-cell firing could be explained on the basis that the inputs to
each cell are simply a random selection from the set of all possible
inputs. We took the population of 28 fields recorded by O’Keefe
and Burgess (1996) as our experimental data, and compared prop-
erties of their firing-rate maps with 100 simulated place cells,
whose firing rate maps we calculated in each of the four rectangular
environments. Each simulated place cell had inputs from 10 ran-
domly selected BVCs (as described above). All 100 simulated cells
used the same threshold value, T, chosen so that about 60% of
cells, which fired in any of the boxes, would fire in all four (in line
with the experimental data). To simulate real firing rates, the pa-
rameter A was set such that the median peak firing rate across all
cells and environments corresponded with that observed experi-
mentally (4.85 Hz). Simulated cells were considered not to fire
where their peak firing rate in an environment was less than 1 Hz
(as with the experimental data in O’Keefe and Burgess, 1996).

After thresholding the summed inputs to each simulated cell,
some cells did not fire in any of the four boxes (16/100). The
existence of a proportion of pyramidal cells which are silent in any
particular experimental environment is consistent with experimen-
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FIGURE 4. A: Data from 28 place fields reported by O’Keefe and
Burgess (1996), shown for comparison with simulated cell firing rate
maps shown in B. Shading indicates rate of firing, which has been
normalized within each environment, so that the peak firing rate
corresponds to the darkest shading. As in O’Keefe and Burgess
(1996), fields with peak firing rates less than 1 Hz are not shown, and
the cell was treated as if it had zero firing rate in these environments.

Pretraining of the rat occurred in the vertical rectangle, except for
cells shown in the rightmost column, in which pretraining occurred in
the horizontal rectangle. B: Firing rate maps of 28 simulated place
cells, with 2–4 BVC inputs chosen to fit the corresponding experi-
mental data shown in A. These plots show the actual fitted values for
F(x), using the same shading scale as in A.
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FIGURE 4. (Continued)
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does not appear to be any trend relating size of environment to
the number of cells which fire in it. This discrepancy suggests
that either the input to the place cells is increased in smaller
environments (i.e., inputs to the hippocampus are statistically
skewed towards short distances, and the modeled population of
BVCs had too few cells tuned to short distances compared to
cells tuned to long distances), or the scale of the environment
affects the threshold of the place cells (perhaps through inter-
actions between place cells). The use of a single fixed threshold
parameter for all cells in all environments was a useful simpli-
fying assumption, but one which is probably excessively con-
servative. While the threshold remains the same, whatever the
size of the environment, in larger environments there are always
more inputs available to drive place cells, and hence the firing
rate tends to be higher.

The model explains a large number of the statistical properties of
place fields, and while the quantitative fit is in no way spectacular,
it is remarkable that so many properties of place cells can be ac-
counted for with such a simple model. Random connectivity pre-
dicts many of the variations in firing which are sometimes taken as
evidence of “remapping” (e.g., a given cell fires in one environment
but not in another, or produces a two-peaked field in one environ-
ment and a one-peaked field in another).

Behavioral Predictions

The location-specificity of place cells suggests that they may play
a role in guiding behavior when it is directed to a particular loca-
tion (O’Keefe and Nadel, 1978). For instance, memory for the
location of an object might include a representation of place based
on the firing rates of hippocampal place cells. Here we need to
consider the neural representation of place not in terms of the
firing of single place cells, but in terms of the pattern of firing across
place cells, since it is unlikely that any single cell controls behavior.

A very simple model of object location memory would be that an
animal encountering an object at a particular location stores the
pattern of place-cell firing rates at that time. To search for the
object, the animal would focus on the location which produce the
same or most similar patterns of firing in the place cells (see the
“simple model” described in Burgess and O’Keefe, 1996). As
shown above, the current model permits us to simulate a popula-
tion of place cells, and we can thus obtain a measure of the simi-
larity of any two locations in terms of their neural representations.
We can thus use the model to make tentative predictions at the
level of behavior (tentative because the relationship between neural
representation and behavior may be more complex than the simple
one outlined here, e.g., as in the full model of Burgess et al., 1997).

FIGURE 8. Orientation of place fields in real (solid lines; data
from O’Keefe and Burgess, 1996) and simulated place fields (dashed
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